ECN594: Math Bootcamp

 Practice Questions II

 Practice Questions II}

August 2022

1. Let (x^{n}) be a real sequence. Show that if $\left|x^{n}\right| \rightarrow 0$, then $x^{n} \rightarrow 0$.

Hint: Use Proposition 1 (the squeeze theorem).
2. Prove Claim 2: Every convergent real sequence is bounded.

Hint: Fix $\varepsilon=1$.
3. Let $\left(a^{n}\right)$ and $\left(b^{n}\right)$ be real sequences, and suppose $a^{n} \rightarrow a$, and $b^{n} \rightarrow b$. Show that if $a^{n} \leq b^{n}$ for all $n \in \mathbb{N}$, then $a \leq b$.
4. Prove Claim 3: An open ball is an open set.

Hint: Fix an arbitrary open ball $B\left(x_{0}, r\right)$. For any $y \in B\left(x_{0}, r\right)$, follow the picture above to choose some $r_{1}>0$ such that

$$
B\left(y, r_{1}\right) \subseteq B\left(x_{0}, r\right)
$$

5. Let $\left(x^{k}\right)$ be a sequence, and $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Negate the following statements:
(a) for all $\varepsilon>0$, there exists a $N \in \mathbb{N}$ such that $d\left(x^{k}, x\right)<\varepsilon$ for all $k \geq N$;
(b) for every $Q \in \mathbb{R}$, there exists $M \in \mathbb{N}$ with $x^{k} \geq Q$ for each $k \geq M$;
(c) for any $\varepsilon>0$, there exists $\delta>0$ such that for all $y \in \mathbb{R}^{n}$ with $|x-y|<\delta$, we have $|f(x)-f(y)|<\varepsilon$.
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Show that the composite function $h=f \circ g$ is continuous.
7. Let D be a nonempty, finite set. Show that f is continuous at each point in its domain.
8. Show that the function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
g(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

is not continuous at $(0,0)$.
9. Show that $\cos x-\cos y \leq|x-y|$ for any $x, y \in \mathbb{R}$.

Hint. $(\cos x)^{\prime}=-\sin x$, and $\sin x \in[-1,1]$ for all $x \in \mathbb{R}$. Now use Theorem 7 (the mean value theorem).
10. Prove Theorem 8.

Hint. Use Theorem 7 (the mean value theorem).
11. Let $f: \mathbb{R} \backslash\{-1\} \rightarrow \mathbb{R}$ be defined as

$$
f(x)=\frac{x-1}{x+1} .
$$

Let g denote the inverse of f, which can be written as

$$
g(y)=\frac{1+y}{1-y} .
$$

Use the inverse function theorem and direct computation to get the derivative of g.
12. Prove Proposition 8.
13. Prove the Young's inequality: For all $p, q>0$ satisfying $\frac{1}{p}+\frac{1}{q}=1$,

$$
a^{\frac{1}{p}} b^{\frac{1}{q}} \leq \frac{a}{p}+\frac{b}{q}
$$

for any $a, b \in \mathbb{R}$.
Hint. Use the facts that $f(x)=\log x$ is strictly increasing and strictly concave on $(0, \infty)$, and

$$
\log y^{m} z^{k}=m \log y+k \log z
$$

