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1 Optimization problems: An introduction

In these notes, we focus on optimization problems that the values of a given function 𝑓 ∶ 𝑆 → ℝ
are to be maximized or minimized over a set 𝐷, where 𝐷 ⊆ 𝑆 ⊆ ℝ𝑛. We call the function 𝑓 as the
objective function, and the set 𝐷 is called the constraint set. We can describe a maximization
problem as follows:

maximize 𝑓 (𝑥) subject to 𝑥 ∈ 𝐷;

or more compactly,
max
𝑥∈𝐷

𝑓 (𝑥).

A minimization problem can be described analogously.
A solution to a maximization problem is a point 𝑥 ∈ 𝐷 such that 𝑓 (𝑥) ≥ 𝑓 (𝑦) for all 𝑦 ∈ 𝐷.

We say that 𝑓 attains a maximum on 𝐷 at 𝑥 , and also refer to 𝑥 as a maximizer of 𝑓 on 𝐷; we
usually write the set of all maximizers of this problem as

argmax
𝑥∈𝐷

𝑓 (𝑥).

Analogously, 𝑥 is a solution for a minimization problem if 𝑓 (𝑥) ≤ 𝑓 (𝑦) for all 𝑦 ∈ 𝐷. And we say
𝑓 attains a minimum on 𝐷 at 𝑥 , so 𝑥 is a minimizer of 𝑓 on 𝐷; we usually write the set of all
minimizers of this problem as

argmin
𝑥∈𝐷

𝑓 (𝑥).

Notice that, as the following two example point out, it is not guaranteed that a solution exists or
it is unique.

Example 1. Let 𝐷 = ℝ+ and 𝑓 ∶ ℝ → ℝ be defined by 𝑓 (𝑥) = 𝑥2. Consider the maximization
problem max𝑥∈𝐷 𝑓 (𝑥): we have 𝑓 (𝐷) = ℝ+, and sup 𝑓 (𝐷) = ∞, so this maximization problem has
no solution.

Example 2. Let 𝐸 = [0, 1) and 𝑔 ∶ ℝ → ℝ be defined by 𝑔(𝑥) = 𝑥 . Consider the maximization
problemmax𝑥∈𝐸 𝑔(𝑥), we have 𝑓 (𝐸) = [0, 1), and sup 𝑓 (𝐸) = 1. However, since sup 𝑓 (𝐸) ∉ 𝑓 (𝐸), this
maximization problem has no solution.

Example 3. Let 𝐺 = [−1, 1], and 𝑓 (𝑥) is the same as in Example 1. for 𝑥 ∈ 𝐺. It is not difficult
to see that (for example, by drawing a picture) the maximization problem max𝑥∈𝐺 𝑓 (𝑥) has two
solutions: 𝑥 = −1 and 𝑥 = 1.

Next we state two useful general properties of optimization problems.
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Proposition 1. Let 𝑓 ∶ 𝑆 → ℝ, where 𝑆 ⊆ ℝ𝑛; and let −𝑓 denote the function whose value at 𝑥 is
−𝑓 (𝑥). Then 𝑥 ∈ 𝐷 is a maximizer of 𝑓 on 𝐷 ⊆ 𝑆 if and only if 𝑥 is a minimizer of −𝑓 on 𝐷; and
𝑦 ∈ 𝐷 is a minimizer of 𝑓 on 𝐷 if and only of 𝑦 is a maximizer of −𝑓 on 𝐷.

Proof. Exercise. ■

Proposition 1 tells us that a generic minimization problem

min
𝑥∈𝐷

𝑔(𝑥)

is equivalent to
max
𝑥∈𝐷

−𝑔(𝑥);

in other words, every minimization problem may be represented as a maximization problem.
Therefore, in the remainder of these notes, we devote most of our attention to maximization
problems: the tools and results we develop for maximization problems can be easily adapted
to minimization problems. Proposition 2 identifies a class of transformations of the objective
function that under which the set of solutions remain unchanged.

Proposition 2. Let 𝜑 ∶ ℝ → ℝ be a strictly increasing function. Then 𝑥 is a maximizer of 𝑓 on 𝐷
if and only if 𝑥 is a maximizer of 𝜑◦𝑓 on 𝐷.

Proof. Exercise. ■

Is Proposition 2 still valid if 𝜑 is only required to be increasing instead of strictly increasing?
Why?

Example 4. Let 𝑓 ∶ [1, 2] × [1, 2] → ℝ be defined by 𝑓 (𝑥 , 𝑦) = 𝑥𝑦. Since 𝑓 is strictly increasing
in both 𝑥 and 𝑦 (how would you show this?), the unique maximizer is (𝑥 , 𝑦) = (2, 2). Now let
𝑔(𝑧) = log 𝑧, so

𝑔◦𝑓 = log(𝑥𝑦) = log 𝑥 + log 𝑦 ,

whose unique maximizer is also (2, 2).

2 Sufficient conditions for existence and uniqueness

Before we study optimization problems in more details, we discuss existence and uniqueness of
solutions first. Existence of solutions is a fundamental question in optimization problems: when
we cannot guarantee existence, characterizing and/or finding solutions do not make much sense.
Theorem 1 is an extremely important and useful result that identifies a (considerably general) set
of sufficient conditions for existence of solutions.
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Theorem 1 (The extreme value theorem). Let 𝑆 be a nonempty compact subset of ℝ𝑛, and let 𝑓 be
a continuous real function on 𝑆. Then there exists 𝑥 , 𝑦 ∈ 𝑆 with 𝑓 (𝑥) = sup 𝑓 (𝑆) and 𝑓 (𝑦) = inf 𝑓 (𝑆).

To prove Theorem 1, the key step is that 𝑓 (𝑆) is a compact subset of ℝ provided that 𝑓 is
continuous and 𝑆 is compact.1 Consequently, the fact that 𝑓 (𝑆) is compact means it is closed and
bounded; so boundedness implies that it cannot be that sup 𝑓 (𝑆) ∈ {∞, −∞} and/or inf 𝑓 (𝑆) ∈
{∞, −∞} (in other words, both sup 𝑓 (𝑆) and inf 𝑓 (𝑆) are well-defined), and then closedness yields
that both sup 𝑓 (𝑆) and inf 𝑓 (𝑆) are contained in 𝑓 (𝑆).

Figure 1: Let 𝑓 ∶ [𝑎, 𝑏] → ℝ be continuous, then 𝑓 attains a maximum at 𝑥 = 𝑐, and attains a
minimum at 𝑥 = 𝑑 .

It is very important to note that, the extreme value theorem only provides sufficient conditions
for the existence of optima: if the conditions of the theorem are met, both maxima and minima
must exist. But it is silent on what happens when the conditions fail; in particular, these condi-
tions are not necessary: if some of the conditions fail, optima may still exist. In Example 1 and
Example 2, the constraint set is not compact, and 𝑓 fails to attain a maximum; in Example 3, all
conditions of the theorem are met, so 𝑓 attains both maximum and minimum (which is unique, at
𝑥 = 0). In Example 5 below, however, all conditions of the theorem are violated, but both maxima
and minima exist.

1We omit the proof of this fact; see, for example, Ok (2007), page 222, or Sundaram (1996), page 96. All proofs I
mentioned above, however, use some other equivalent (but more general) definitions of compactness, which we do
not mention in this class.
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Example 5. Let 𝐷 = (0,∞), and let 𝑓 ∶ ℝ → ℝ be defined by

𝑓 (𝑥) =
⎧⎪⎪
⎨⎪⎪⎩

1 − (𝑥 − 1)2 if 1 ≤ 𝑥 ≤ 2,

0 otherwise.

We see that (draw a picture!) 𝑓 is not continuous at 𝑥 = 1 ∈ 𝐷, and 𝐷 is not compact; but 𝑓 is
maximized at 𝑥 = 1, and it attains a minimum at every 𝑥 ∈ (0, 1) ∪ [2,∞).

Uniqueness of solutions is another important question. For instance, if we know, before we
actually solve a problem, that a unique solution exists, we do not need to worry about multiplicity.
More importantly, in many problems the solution depends on some parameters, then uniqueness
of solution makes the question of “how solutions change with parameters” way easier to answer.
The next result identifies a sufficient condition for uniqueness of solution.

Theorem 2. Let 𝐷 be a nonempty convex subset of ℝ𝑛, and 𝑓 ∶ 𝐷 → ℝ is strictly quasiconcave.
Then if 𝑓 attains a maximum on 𝐷, the solution is unique.

Proof. Suppose there exist 𝑥 , 𝑦 ∈ 𝐷, 𝑥 ≠ 𝑦, such that 𝑓 (𝑥) = 𝑓 (𝑦) = max 𝑓 (𝐷). Since 𝐷 is convex,
fix any 𝜆 ∈ (0, 1), we have 𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝐷. But then strict quasiconcavity of 𝑓 implies that

𝑓 (𝜆𝑥 + (1 − 𝜆)𝑦) > min{𝑓 (𝑥), 𝑓 (𝑦)} = max 𝑓 (𝐷),

a contradiction. ■

Importantly, before we use Theorem 2 to argue that the solution is unique, we have to make
sure that a solution indeed exists.

3 Interior optima

As the section title suggests, in this sectionwemainly concern the set ofmaximizers in the interior
of the feasible set. Consider the function 𝑓 ∶ [𝑎, 𝑏] → ℝ shown in Figure 2. Evidently, the unique
maximizer of 𝑓 is 𝑥 ′′; and although 𝑥 ′ is not a maximizer, but 𝑓 indeed attains a maximum at 𝑥 ′

amongst the points that are close to it. The following definition formalizes such points.

Definition 1 (Local maximizer). Let 𝐷 ⊆ 𝑆 ⊆ ℝ𝑛, and let 𝑓 be a real-valued function defined on
𝑆. The point 𝑥 ∗ ∈ 𝐷 is a local maximizer of 𝑓 (𝑥) on 𝐷 if there exists 𝜀 > 0 such that 𝑓 (𝑥 ∗) ≥ 𝑓 (𝑥)
whenever 𝑥 ∈ 𝐷 and 𝑑(𝑥 , 𝑥 ∗) < 𝜀.

A local minimizer can be analogously defined. In the remainder of theses notes, we usually
refer to a maximizer as a global maximizer to emphasize that it is not only a local maximizer.
Evidently, every global maximizer (minimizer) is a local maximizer (minimizer).
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Figure 2: Local maximum and global maximum

In economics and business, as Osborne (2016) points out, we are almost always interested in
global maximizers, not merely local maximizers. Nonetheless, as we will soon see, finding local
maximizers could be an important step in solving (global) optimization problems.

3.1 First-order conditions

Interior local optima have a celebrated but simple property that can be characterized using first
derivative, which is usually called the first-order condition.

Proposition 3 (First-order condition, single varible). Let 𝐼 ⊆ ℝ be an interval, and let 𝑓 be a
real-valued function defined on 𝐼 . If 𝑥 ∗ ∈ int𝐼 is a local maximizer or minimizer of 𝑓 , and 𝑓 is
differentiable at 𝑥 ∗, then 𝑓 ′(𝑥 ∗) = 0.

Proof. Suppose that 𝑥 ∗ is a local maximizer of 𝑓 . Because 𝑥 ∗ is in the interior of 𝐼 , for ℎ > 0
sufficiently small we have 𝑥 ∗ + ℎ ∈ 𝐼 , so that 𝑓 (𝑥 ∗ + ℎ) is defined. Thus because 𝑥 ∗ is a local
maximizer of 𝑓 , for small enough values of ℎ, we have 𝑓 (𝑥 ∗ + ℎ) ≤ 𝑓 (𝑥 ∗), and hence

𝑓 (𝑥 ∗ + ℎ) − 𝑓 (𝑥 ∗)
ℎ

≤ 0.

Then by definition of a derivative, the limit of left-hand side of this inequality as ℎ → 0 is 𝑓 ′(𝑥 ∗),
hence 𝑓 ′(𝑥 ∗) ≤ 0. A symmetric argument using ℎ < 0 shows that 𝑓 ′(𝑥 ∗) ≥ 0; thus 𝑓 ′(𝑥 ∗) = 0. An
analogous argument applies when 𝑥 ∗ is a local minimizer of 𝑓 . ■
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𝑂 𝑥

𝑦

𝑓 (𝑥) = 𝑥3

Figure 3: The first-order condition need not to be sufficient: Let 𝑓 (𝑥) = 𝑥3; we have𝑓 ′(0) = 0 but
𝑥 = 0 is neither a local maximizer nor a local minimizer.

Indeed, both 𝑥 ′ and 𝑥 ′′ in Figure 2 are local maximizers, and 𝑓 ′(𝑥 ′) = 𝑓 ′(𝑥 ′′) = 0. However, as
shown in Figure 3, there may exist points such that the first derivative of 𝑓 is zero at these points,
but 𝑓 does not achieve local optima there.

Proposition 3 can be generalized to functions with many variables.

Proposition 4 (First order condition). Let 𝑆 be a subset of ℝ𝑛, and let 𝑓 be a real-valued function
defined on 𝑆. If 𝑥 ∗ ∈ int𝑆 is a local maximizer or minimizer of 𝑓 , and 𝑓 is differentiable at 𝑥 ∗, then

𝜕𝑓
𝜕𝑥𝑗

(𝑥 ∗) = 0

for all 𝑗 = 1,… , 𝑛.

We omit the proof of Proposition 4; it can be easily proved by applying the same argument
we used in the proof of Proposition 3 to 𝑛 partial derivatives. (Try it!)
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3.2 Solving for optima on a constraint set

Proposition 3 tells us that, among all the points in the interval 𝐼 , only the endpoints (if any) and the
points satisfying the first-order condition can be maximizers of a function 𝑓 of a single variable.
For most functions, the first-order condition is only satisfied by a relatively small number of
points, so the following “cookbook” procedure to find the maximizers is very useful.

Let 𝐼 be an interval, and let 𝑓 ∶ 𝐼 → ℝ. If the problem max𝑥∈𝐼 𝑓 (𝑥) has solutions, they may
be found as follows:

• Find all 𝑥 ∈ 𝐼 such that 𝑓 ′(𝑥) = 0, and calculate the values of 𝑓 at each such point.

• Find the values of 𝑓 at the endpoints, if any, of 𝐼 .

• Among all the points you have found, the ones at which the value of 𝑓 is largest are
the maximizers of 𝑓 .

The variant of this procedure in which the last step involves choosing the points 𝑥 at which
𝑓 (𝑥) is smallest may be used to solve the analogous minimization problem.

Example 6. Let 𝑓 ∶ ℝ → ℝ be defined as 𝑓 (𝑥) = 𝑥2; consider the problem

max
𝑥∈[−1,1]

𝑓 (𝑥).

Since 𝑓 (𝑥) is continuous, and [−1, 1] is compact,Theorem 1 implies that themaximization problem
has a solution. It is not difficult to see that the only point satisfying the first-order condition is
𝑥 = 0, and the value of the function at this point is f(0) = 0. The values of 𝑓 at the endpoints of
[−1, 1] are 𝑓 (−1) = 1 and 𝑓 (1) = 1. Thus the global maximizer of 𝑓 on [−1, 1] are 𝑥 = 1 and 𝑥 = −1.
In fact, 𝑥 = 0 is the unique global minimizer.

And similarly for functions defined on 𝑆 ⊆ ℝ𝑛, Proposition 4 implies that only points that can
be global maximizers are either boundary points of the set 𝑆, or those satisfying the first-order
conditions.
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𝑂 𝑥

𝑦

Figure 4: The constraint set of the problem Example 7 (pink) and its boundary (maroon).

Let 𝑆 be a subset of ℝ𝑛, and let 𝑓 ∶ 𝑆 → ℝ. If the problem

max
𝑥∈𝑆

𝑓 (𝑥)

has solutions, they may be found as follows:

• Find all points in int𝑆 satisfying the first-order conditions.

• Among the points in 𝑆⧵int𝑆, find those at which the value of 𝑓 is largest.

• Among all the points you have found, the ones at which the value of 𝑓 is largest are
the maximizers of 𝑓 .

By replacing every “largest” by “smallest” in the procedure above, we are able locates the
solutions of the analogous minimization problem.

Example 7. Let 𝑔 ∶ ℝ2 → ℝ+ be defined as 𝑔(𝑥) = (𝑥 − 1)2 + (𝑦 − 1)2; consider the problem

max
𝑥∈[0,2], 𝑦∈[−1,3]

𝑔(𝑥 , 𝑦).

This problem satisfies the conditions ofTheorem 1, so it has at least one solution. The first-order
conditions are

2(𝑥 − 1) =0

2(𝑦 − 1) =0
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and the lone point in ℝ2 satisfying these conditions is (1, 1), and it is in the constraint set. The
value of the objective function at this point is 0.

Now consider the behavior of the objective function on the boundary of the constraint set,
which is a rectangle; see Figure 4.

• Let us consider the left boundary of the rectangle in Figure 4 first, where 𝑥 = 0 and −1 ≤
𝑦 ≤ 3. The value of the objective function on that line segment is 1 + (𝑦 − 1)2. The problem
of finding 𝑦 to maximize this function subject to −1 ≤ 𝑦 ≤ 3 satisfies the conditions of
Theorem 1, and thus has a solution.

The first-order condition is 2(𝑦 − 1) = 0, which has a unique solution 𝑦 = 1 ∈ [−1, 3].
The value of the objective function at this point is 1. On the boundary of which is in the
constraint set. The value of the objective function at this point is 1. On the boundary of the
set {(0, 𝑦) ∶ −1 ≤ 𝑦 ≤ 3}, namely at the points (0,-1) and (0, 3), the value of the objective
function is 5. Thus on this part of the boundary, the points (0, −1) and (0, 3) are the only
candidates for a solution of the original problem.

• A similar analysis leads to the conclusion that the points (2,-1) and (2,3) are the only candi-
dates for a maximizer on the right boundary of the rectangle where 𝑥 = 2 and −1 ≤ 𝑦 ≤ 3.
Moreover, the points (0, −1) and (2, −1) are the only candidates for a maximizer on the top
part of the boundary for which 0 ≤ 𝑥 ≤ 2 and 𝑦 = −1, and the points (0,3) and (2,3) are the
only candidates for a maximizer on the part of the boundary for which 0 ≤ 𝑥 ≤ 2 and 𝑦 = 3.

• Therefore, the value of the objective function at all these candidates for a solution on the
boundary of the constraint set is 5.

Finally, comparing the values of the objective function at the candidates for a solution that
are (a) interior to the constraint set (namely (1, 1)) and (b) on the boundary of the constraint set,
we conclude that the problem has four solutions, (0, −1), (0, 3), (2, −1), and (2, 3). The maximal
value of the function on the constraint set is 5.

3.3 Second-order conditions

Observe that Proposition 3 and Proposition 4 do not distinguish between local maxima and local
minima. A set of results, usually called the second-order conditions, by examining the behavior of
second derivatives at an optimum, not only allow us to obtain such a distinction, but also provide
sufficient conditions that identify specifit points as being local optima. We do not present these
results in these notes; interested readers are directed to Osborne (2016), Section 5.2, or Sundaram
(1996), Section 4.3.
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3.4 First-order conditions and global optima

If 𝑓 is a concave differentiable function of single variable, the first-order condition becomes suf-
ficient, and more importantly, points satisfying the first-order condition are guaranteed to be
global maximizers of 𝑓 . This is because a concave and differentiable function has the following
property: for every point 𝑥 , the graph of a 𝑓 lies on or below the tangent to 𝑓 at 𝑥 . Thus if 𝑥 ∗

satisfies the first-order condition, so 𝑓 ′(𝑥 ∗) = 0, 𝑥 ∗ must be a global maximizer of 𝑓 (see Figure 5
for an illustration). Similarly, a differentiable convex function lies on or above any of its tangents,
so points satisfying the first-order condition are guaranteed to be global minimizers of 𝑓 . We thus
have the following result.

Figure 5: The first-order condition identifies global maximizers for concave differentiable func-
tions.

Proposition 5. Let 𝐼 ⊆ ℝ be an interval, and let 𝑓 be a real-valued differentiable function defined
on 𝐼 . If 𝑥 ∗ ∈ int𝐼 , then

• if 𝑓 is concave then 𝑥 ∗ is a global maximizer of 𝑓 in 𝐼 if and only if 𝑓 ′(𝑥 ∗) = 0; and

• if 𝑓 is convex then 𝑥 ∗ is a global minimizer of 𝑓 in 𝐼 if and only if 𝑓 ′(𝑥 ∗) = 0.

10



Proof. The “only if” direction follows from Proposition 3; it remains to prove “if”. Recall that, if
𝑓 is a differentiable function defined on an interval 𝐼 , then 𝑓 is concave if and only if

𝑓 (𝑥) − 𝑓 (𝑦) ≤ 𝑓 ′(𝑦)(𝑥 − 𝑦)

for all 𝑥 , 𝑦 ∈ 𝐼 . Then because 𝑓 is concave on 𝐼 and 𝑓 ′(𝑥 ∗) = 0, we must have

𝑓 (𝑥) − 𝑓 (𝑥 ∗) ≤ 0

for all 𝑥 ∈ 𝐼 ; so 𝑥 is a global maximizer of 𝑓 in 𝐼 . Similarly, if 𝑓 is convex then 𝑓 (𝑥 ′) ≥ 𝑓 (𝑥) for all
𝑥 ′ ∈ 𝐼 . ■

Example 8. Let ℎ ∶ ℝ → ℝ be defined by ℎ(𝑥) = −𝑥2. Consider the problem

max
𝑥∈[−1,1]

ℎ(𝑥).

Observe that the objective function ℎ is (strictly) concave; solve the first-order condition

ℎ′(𝑥 ∗) = −2𝑥 ∗,

we get that 𝑥 ∗ = 0. By Proposition 5, the global maximizer of ℎ is 𝑥 ∗ = 0, which is in [−1, 1] and
is thus the unique solution of the problem.

Example 9. A firm produces a single product using a single input. The unit price of the input is
𝑤 and the unit price of output is 𝑝. The firm’s output from 𝑥 units of the input is

√
𝑥 . The firm’s

profit maximization problem is
max
𝑥≥0

𝑝
√
𝑥 − 𝑤𝑥 .

The first derivative of the objective function is (1/2)𝑝𝑥−1/2 − 𝑤1 and the second derivative is
−(1/4)𝑝𝑥−3/2, which is less than zero for all 𝑥 ≥ 0; hence, the objective function is concave. Thus
the solution of this problem can be obtained by solving (1/2)𝑝(𝑥 ∗)−1/2 −𝑤 = 0, so that 𝑥 ∗ = (𝑝/2𝑤)2.

Similar to Proposition 3, Proposition 5 can also be generalized to functions with many vari-
ables.

Proposition 6. Let 𝑇 be a convex subset of ℝ𝑛, and let 𝑓 ∶ 𝑇 → ℝ be differentiable. If 𝑥 ∗ ∈ int𝑇 ,
then

• if 𝑓 is concave then 𝑥 ∗ is a global maximizer of 𝑓 in 𝑇 if and only if

𝜕𝑓
𝜕𝑥𝑗

(𝑥 ∗) = 0

11



for all 𝑗 = 1,… , 𝑛; and

• if 𝑓 is convex then 𝑥 ∗ is a global minimizer of 𝑓 in 𝑇 if and only if

𝜕𝑓
𝜕𝑥𝑗

(𝑥 ∗) = 0

for all 𝑗 = 1,… , 𝑛.

4 Detour: The implicit function theorem

In many models in economics and business, the optimal choice or equilibrium value of a variable
𝑥 can be expressed as the solution of an equation

𝑓 (𝑥 , 𝛼) = 0, (1)

where 𝑓 is a function, and 𝛼 is a parameter.

Example 10. Consider the following optimization problem

max
𝑥∈𝐴

𝐹 (𝑥 , 𝛼),

where 𝐹 ∶ ℝ2 → ℝ is a strictly concave and differentiable function, 𝐴 is a closed interval, and 𝛼
is a parameter. Then the first-order condition is sufficient, and if we let

𝑓 =
𝜕𝐹
𝜕𝑥

,

the optimal choice of 𝑥 is the solution to Equation (1).

In such cases, we sometimes want to answer the question that how the optimal choice or
equilibrium value of 𝑥 depends on the parameter 𝛼 . For example, does it increase or decrease
when the value of the parameter increases?

Sometimes it is easy to write the optimal choice or equilibrium value of 𝑥 , denote by 𝑥 ∗,
explicitly as a function of parameter 𝛼 ; for example, if

𝑓 (𝑥 , 𝛼) = 2𝛼 − 𝑥 = 0,

it is clear that 𝑥 ∗ = 2𝛼 , so it is strictly increasing in 𝛼 . In many other cases, however, we cannot
write down explicit formulae like this. Fortunately, with the help of the celebrated implicit func-
tion theorem, under some conditions, we are still able to answer the question: the theorem states

12



that 𝑥 ∗(𝛼) exists, and more importantly, its derivative is continuous and can be derived from the
expression of 𝑓 (𝑥 , 𝑎).

Definition 2 (Level curves). Let 𝑓 ∶ ℝ2 → ℝ. The set

C𝑓 (𝑘) = {(𝑥 , 𝑦) ∈ ℝ2 ∶ 𝑓 (𝑥 , 𝑦) = 𝑘},

which is the set of pairs (𝑥 , 𝑦) ∈ ℝ2 such that 𝑓 (𝑥 , 𝑦) = 𝑘 is called the level curve of 𝑓 for the
value 𝑘.

Example 11. Let ℎ ∶ ℝ2 → ℝ be defined by ℎ(𝑥 , 𝑦) = 𝑥2 + 𝑦2. The level curve of ℎ for the value
1 is the set

Cℎ(1) = {(𝑥 , 𝑦) ∈ ℝ2 ∶ ℎ(𝑥 , 𝑦) = 𝑥2 + 𝑦2 = 1},

which is drawn in Figure 6.

𝑂 𝑥

𝑦

ℎ(𝑥 , 𝑦) = 1

Figure 6: The level curve of the function ℎ(𝑥 , 𝑦) = 𝑥2 + 𝑦2 for the value 1.

Example 12. The unit circle 𝐶𝑈 = {(𝑥 , 𝑦) ∈ ℝ2 ∶ 𝑥2 + 𝑦2 = 1} can be specified as the level
curve Cℎ(1) of the function ℎ(𝑥 , 𝑦) = 𝑥2 + 𝑦2, which is shown in Figure 6. Around point 𝑎, 𝑦
can be expressed as a function 𝑔(𝑥). In this example this function can be written explicitly as
𝑔1(𝑥) =

√
1 − 𝑥2 around point 𝑎. In many cases no such explicit expression exists, but one can still

refer to the implicit function 𝑦 = 𝑔(𝑥). No such function exists around point 𝑏. (Why?2)

Definition 3 (Continuously differentiable functions). Let 𝑓 ∶ 𝑈 → ℝ.
2Hint. Take 𝜀 > 0 small, and think about what happens to the corresponding 𝑦’s when we let 𝑥 = 1 + 𝜀 and

𝑥 = 1 − 𝜀, respectively.

13



Figure 7: The unit circle 𝐶𝑈 = {(𝑥 , 𝑦) ∈ ℝ2 ∶ 𝑥2 + 𝑦2 = 1}.

(1) If 𝑈 is an open interval, 𝑓 is said to be continuously differentiable if the derivative 𝑓 ′

exists and is itself a continuous function.

(2) If 𝑈 is an open subset of ℝ𝑛, 𝑓 is said to be continuously differentiable if all its partial
derivatives exist and are continuous.

Theorem 3 (Implicit function theorem). Let 𝑆 be an open subset of ℝ2. Suppose 𝐹 ∶ 𝑆 → ℝ is a
continuously differentiable function defining a curve 𝐹 (𝑥 , 𝑦) = 0; let (𝑥0, 𝑦0) be a point on the curve.
If

𝜕𝐹
𝜕𝑦

||||(𝑥0,𝑦0)
≠ 0, (2)

then there exists a continuously differentiable function 𝑔 defined on an open interval 𝐼 containing 𝑥0
such that 𝑦0 = 𝑔(𝑥0), and at any 𝑥 ∈ 𝐼 we have

𝐹 (𝑥 , 𝑔(𝑥)) = 0, (3)

and
d𝑦
d𝑥

= 𝑔′(𝑥) = −
𝜕𝐹 /𝜕𝑥
𝜕𝐹 /𝜕𝑦

. (4)

We omit the proof of Theorem 3 and provide an heuristic argument for Equation (4) only.3

3See Simon and Blume (1994), page 344, Theorem 15.3 for a nice sketch of the proof. For those who know some
differential equations, you are encouraged to prove Theorem 3 using the Picard-Lindelöf theorem on the existence
and uniqueness of a solution of a general ordinary differential equation (See, for example, Ok (2007), page 188). For
a more general statement of the theorem and its proof, see Rudin (1976), page 224,Theorem 9.28.
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Differentiate both sides of Equation (3), by a version of the chain rule we have

𝜕𝐹
𝜕𝑥

(𝑥 , 𝑔(𝑥)) +
𝜕𝐹
𝜕𝑦

(𝑥 , 𝑔(𝑥))𝑔′(𝑥) = 0.

Then so long as Equation (2) holds, for 𝑥 sufficiently close to 𝑥0, we have 𝜕𝐹 (𝑥 , 𝑔(𝑥))/𝜕𝑦 ≠ 0. A
rearrangement of the above equality yields Equation (4).

Example 13. Consider the equation

𝐺(𝑥 , 𝑦) = 𝑥2 − 3𝑥𝑦 + 𝑦3 − 7 = 0 (5)

around the point (𝑥0, 𝑦0) = (4, 3). One can compute that

𝜕𝐺
𝜕𝑥

= 2𝑥 − 3𝑦,

𝜕𝐺
𝜕𝑦

= −3𝑥 + 3𝑦2;

then we have
𝜕𝐺
𝜕𝑥

(4, 3) = −1 and
𝜕𝐺
𝜕𝑦

(4, 3) = 15.

ByTheorem 3, 𝐺(𝑥 , 𝑦) does indeed define 𝑦 as a continuously differentiable function of 𝑥 around
(𝑥0, 𝑦0) = (4, 3), and

d𝑦
d𝑥

(𝑥0) = −
𝜕𝐺
𝜕𝑥 (𝑥0, 𝑦0)
𝜕𝐺
𝜕𝑦 (𝑥0, 𝑦0)

=
1
15

.

5 Equality constraints

Let 𝑆 be an open subset of ℝ𝑛. Let 𝑓 ∶ 𝑆 → ℝ and 𝑔𝑗 ∶ 𝑆 → ℝ, 𝑗 = 1,… ,𝑚 be continuously
differentiable functions. Consider an optimization problem of the form

max
𝑥∈𝑆

𝑓 (𝑥) (6)

subject to 𝑔𝑗(𝑥) = 0 for 𝑗 = 1,… ,𝑚

with 𝑚 ≤ 𝑛.

5.1 A special case

To grasp some intuition, we study a special case of problem (6) first: let 𝑓 be a function of two
variables (that is, 𝑛 = 2) and 𝑚 = 1, so there is only one equality constraint. That is, we work
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Figure 8: Maximizing a function of two variables subject to an equality constraint.

with a problem of the form

max
𝑥∈𝑆

𝑓 (𝑥) (7)

subject to 𝑔(𝑥) = 0.

It is usually convenient to represent a function defined on a subset of ℝ2 by a family of level
curves. In particular, for problem (7), we can represent the constraint 𝑔(𝑥) = 0 in the (𝑥1, 𝑥2)−plane
as the level curve

C𝑔(0) = {𝑥 ∈ ℝ2 ∶ 𝑔(𝑥) = 0},

which is the blue curve in Figure 8. Assume that 𝑓 is increasing to the northeast, so in Figure 8
we have ℎ < 𝑘 < 𝑞.

Assume further that the functions 𝑓 and 𝑔 are differentiable, then we see from Figure 8 that at
a solution 𝑥 ∗ of problem (7), the level curve C𝑔(0) representing the constraint is tangent to a level
curve of 𝑓 , C𝑓 (𝑘). Consequently, the two level curves have the same slope at 𝑥 ∗; by the implicit
function theorem, we know that

−
𝜕𝑓
𝜕𝑥1

(𝑥 ∗)
𝜕𝑓
𝜕𝑥2

(𝑥 ∗)
= −

𝜕𝑔
𝜕𝑥1

(𝑥 ∗)
𝜕𝑔
𝜕𝑥2

(𝑥 ∗)
.

Now we introduce a new variale 𝜆 ∈ ℝ, which is defined as

𝜆 = −
𝜕𝑓
𝜕𝑥1

(𝑥 ∗)
𝜕𝑔
𝜕𝑥1

(𝑥 ∗)
= −

𝜕𝑓
𝜕𝑥2

(𝑥 ∗)
𝜕𝑔
𝜕𝑥2

(𝑥 ∗)
, (8)
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provided that both 𝜕𝑔
𝜕𝑥1

(𝑥 ∗) and 𝜕𝑔
𝜕𝑥2

(𝑥 ∗) are nonzero. One might be tempted to argue that intro-
ducing a new variable merely complicates the problem, but as we will see shortly, it is in fact a
clever step that allows the condition for a maximum to be expressed in an appealing way.

Therefore, at 𝑥 ∗, both Equation (8) and the constraint 𝑔(𝑥 ∗) = 0 must hold. These conditions
can be written as the following system of equations:

𝜕𝑓
𝜕𝑥1

(𝑥 ∗) + 𝜆
𝜕𝑔
𝜕𝑥1

(𝑥 ∗) = 0,

𝜕𝑓
𝜕𝑥2

(𝑥 ∗) + 𝜆
𝜕𝑔
𝜕𝑥2

(𝑥 ∗) = 0,

𝑔(𝑥 ∗) = 0.

The three equations can be viewed conveniently as the first-order conditions of the Lagrangian

L(𝑥 , 𝜆) = 𝑓 (𝑥) + 𝜆𝑔(𝑥)

with respect to 𝑥 , 𝑦 and 𝜆, respectively. We usually call the real number 𝜆 the Lagrangian
multiplier of the problem. We can think of the term 𝜆𝑔(𝑥) as the punishment of violating the
constraint.

The discussion above is summarized in Proposition 7. Intuitively, this result says that we
can set penalties for violating the equality constraint in such a way that at the maximum the
constraint is exactly satisfied.

Proposition 7 (Equality constraints, a special case). Let 𝑆 be an open subset of ℝ2, and let 𝑓 ∶
𝑆 → ℝ and 𝑔 ∶ 𝑆 → ℝ be continuously differentiable functions. If 𝑥 ∗ = (𝑥 ∗

1, 𝑥 ∗
2) ∈ 𝑆 and it is a

solution to problem

max
𝑥∈𝑆

𝑓 (𝑥)

subject to 𝑔(𝑥) = 0

and suppose also that

either
𝜕𝑔
𝜕𝑥1

(𝑥 ∗) ≠ 0 or
𝜕𝑔
𝜕𝑥2

(𝑥 ∗) ≠ 0.
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Then there exists a unique 𝜆∗ ∈ ℝ such that 𝑥 ∗ satisfies the first-order conditions

𝜕L
𝜕𝑥1

(𝑥 ∗, 𝜆∗) =
𝜕𝑓
𝜕𝑥1

(𝑥 ∗) + 𝜆∗
𝜕𝑔
𝜕𝑥1

(𝑥 ∗) = 0;

𝜕L
𝜕𝑥2

(𝑥 ∗, 𝜆∗) =
𝜕𝑓
𝜕𝑥2

(𝑥 ∗) + 𝜆∗
𝜕𝑔
𝜕𝑥2

(𝑥 ∗) = 0;

𝜕L
𝜕𝜆

(𝑥 ∗, 𝜆∗) = 𝑔(𝑥 ∗) = 0.

Example 14. Let 𝑓 (𝑥1, 𝑥2) = 𝑥1𝑥2, and let 𝑔 (𝑥1, 𝑥2) = 𝑥1 + 4𝑥2 − 8. Consider the following maxi-
mization problem:

max
𝑥1,𝑥2∈ℝ2

𝑓 (𝑥1, 𝑥2)

s.t. 𝑔 (𝑥1, 𝑥2) = 0.

Observe that ∇𝑔(𝑥1, 𝑥2) = (1, 4) for all (𝑥1, 𝑥2) ∈ ℝ2, so we can use Proposition 7. Form the La-
grangian

L (𝑥1, 𝑥2, 𝜆) = 𝑥1𝑥2 + 𝜆 (𝑥1 + 4𝑥2 − 8) ;

by Proposition 7, the necessary conditions are

𝜕L
𝜕𝑥1

= 𝑥2 + 𝜆 = 0 (9)

𝜕L
𝜕𝑥2

= 𝑥1 + 4𝜆 = 0 (10)

𝑥1 + 4𝑥2 − 8 = 0. (11)

We know from (9) and (10) that
− 𝜆 = 𝑥2 =

1
4
𝑥1; (12)

then by (12) and (11), we have
4𝑥2 + 4𝑥2 = 8,

so 𝑥2 = 1. Again by (12), we know that 𝑥1 = 4 and 𝜆 = −1. Proposition 7 implies that the only
candidate for a solution to the problem is (𝑥1, 𝑥2) = (4, 1). In other words, if the problem has a
solution, it must be (𝑥1, 𝑥2) = (4, 1).
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5.2 Interpreting Lagrangian multipliers

We continue working with problem (7), but replace the constraint by

𝑔(𝑥1, 𝑥2) = 𝜂,

and take 𝜂 as a variable. We can think of 𝜂 being either positive or negative and close to zero.
Then the solutions of the new problem should be dependent on 𝜂; in other words, a solution can
be written as 𝑥 ∗(𝜂) = (𝑥 ∗

1(𝜂), 𝑥 ∗
2(𝜂)). Form the Lagrangian

L = 𝑓 (𝑥) + 𝜆[𝑔(𝑥) − 𝜂],

and by Proposition 7, the first-order conditions4

𝜕L
𝜕𝑥1

(𝑥 ∗(𝜂)) =
𝜕𝑓
𝜕𝑥1

(𝑥 ∗(𝜂)) + 𝜆∗(𝜂)
𝜕𝑔
𝜕𝑥1

(𝑥 ∗(𝜂)) = 0 (13)

𝜕L
𝜕𝑥2

(𝑥 ∗(𝜂)) =
𝜕𝑓
𝜕𝑥2

(𝑥 ∗(𝜂)) + 𝜆∗(𝜂)
𝜕𝑔
𝜕𝑥2

(𝑥 ∗(𝜂)) = 0 (14)

must hold. Define
𝑓 ∗(𝜂) = 𝑓 (𝑥 ∗(𝜂)),

and assume that both 𝑥 ∗
1(⋅) and 𝑥 ∗

2(⋅) are differentiable. Differentiate 𝑓 (𝑥 ∗(𝜂)) with respect to 𝜂, by
the chain rule we have

𝑓 ∗′(𝜂) =
𝜕𝑓
𝜕𝑥1

(𝑥 ∗(𝜂))𝑥 ∗
1
′(𝜂) +

𝜕𝑓
𝜕𝑥2

(𝑥 ∗(𝜂))𝑥 ∗
2
′(𝜂)

= −𝜆∗(𝜂) [
𝜕𝑔
𝜕𝑥1

(𝑥 ∗(𝜂))𝑥 ∗
1
′(𝜂) +

𝜕𝑔
𝜕𝑥2

(𝑥 ∗(𝜂))𝑥 ∗
2
′(𝜂)] ,

where the second equality follows from (13) and (14). Differentiate the constraint on both sides,
again by the chain rule, we have

𝜕𝑔
𝜕𝑥1

(𝑥 ∗(𝜂))𝑥 ∗
1
′(𝜂) +

𝜕𝑔
𝜕𝑥2

(𝑥 ∗(𝜂))𝑥 ∗
2
′(𝜂) = 1,

which implies that
𝜆∗(0) = −𝑓 ∗′(0). (15)

That is, the value of the Lagrangemultiplier at the solution of the problem is equal to the inverse of
the instantaneous rate of change in the maximal value of the objective function as the constraint

4To save notation, we suppress the dependence of L on 𝜆 here.
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is relaxed.

5.3 The general case

Proposition 7 can be generalized to study problem (6) we stated at the beginning of this section.
The Lagrangian for that problem is

L(𝑥 , 𝜆) = 𝑓 (𝑥) +
𝑚
∑
𝑗=1

𝜆𝑗𝑔𝑗(𝑥);

that is, there is one Lagrangian multiplier for each constraint.

Definition 4 (Jacobian matrix). For 𝑗 = 1,… ,𝑚, let 𝑔𝑗 ∶ ℝ𝑛 → ℝ be differentiable. The Jacobian
matrix of (𝑔1, … , 𝑔𝑚) at the point 𝑥 ∈ ℝ𝑛 is

𝐽 (𝑥) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝜕𝑔1
𝜕𝑥1

(𝑥) 𝜕𝑔1
𝜕𝑥2

(𝑥) ⋯ 𝜕𝑔1
𝜕𝑥𝑛

(𝑥)
𝜕𝑔2
𝜕𝑥1

(𝑥) 𝜕𝑔2
𝜕𝑥2

(𝑥) ⋯ 𝜕𝑔2
𝜕𝑥𝑛

(𝑥)
⋮ ⋮ ⋱ ⋮

𝜕𝑔𝑚
𝜕𝑥1

(𝑥) 𝜕𝑔𝑚
𝜕𝑥2

(𝑥) ⋯ 𝜕𝑔𝑚
𝜕𝑥𝑛

(𝑥)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

Theorem 4 (Necessity, equality constraints). Let 𝑆 be an open subset of ℝ𝑛, and let 𝑓 ∶ 𝑆 → ℝ
and 𝑔𝑗 ∶ 𝑆 → ℝ, 𝑗 = 1,… ,𝑚 be continuously differentiable functions with 𝑚 ≤ 𝑛. If 𝑥 ∗ ∈ 𝑆 and it is
a solution to problem

max
𝑥∈𝑆

𝑓 (𝑥)

subject to 𝑔𝑗(𝑥) = 0 for 𝑗 = 1,… ,𝑚

and suppose the Jacobian matrix of (𝑔1, … , 𝑔𝑚) at the point 𝑥 ∗ has 𝑚 linearly independent columns
(that is, the rank of the matrix is 𝑚). Then there exists a unique 𝜆∗ = (𝜆∗1, … , 𝜆∗𝑚) ∈ ℝ𝑚 such that 𝑥 ∗

satisfies the first-order conditions

𝜕L
𝜕𝑥𝑘

(𝑥 ∗, 𝜆∗) =
𝜕𝑓
𝜕𝑥𝑘

(𝑥 ∗) +
𝑚
∑
𝑖=1

𝜆∗𝑗
𝜕𝑔𝑗
𝜕𝑥𝑘

(𝑥 ∗) = 0 (16)

for 𝑘 = 1,… , 𝑛, and
𝜕L
𝜕𝜆𝑗

(𝑥 ∗, 𝜆∗) = 𝑔𝑗 (𝑥 ∗) = 0 (17)

for 𝑗 = 1,… ,𝑚.

See Appendix A for the definition of linear independence and rank of a matrix. For a proof
of Theorem 4, see Section 5.6 of Sundaram (1996), or Simon and Blume (1994), page 478–480.
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𝑂 𝑥1

𝑥2

𝑥1 + 𝑥2
2 = 0

∇𝑓 (0, 0)

∇𝑔1(0, 0)∇𝑔2(0, 0)

Figure 9: No multipliers exist

The assumption on the rank of the Jacobian matrix, as illustrated by Example 15, is required
to make sure that there exist 𝜆∗ ∈ ℝ𝑚 such that the gradient of 𝑓 can be expressed as a linear
combination of gradients of the constraint functions at a solution 𝑥 ∗. Roughly, we would like to
find (𝑥 ∗, 𝜆∗) ∈ ℝ𝑛+𝑚, so there are 𝑛 +𝑚 variables; and from necessary conditions (16) and (17) we
get 𝑛 +𝑚 equations. When the maximal number of linearly independent columns of the Jacobian
falls to 𝑞 < 𝑚, 𝑞 −𝑚 equations in (16) and (17) do not provide incremental information about 𝜆𝑗 ’s.

Example 15. Let 𝑓 (𝑥1, 𝑥2) = 𝑥2, 𝑔1(𝑥1, 𝑥2) = 𝑥1, and 𝑔2(𝑥1, 𝑥2) = −𝑥1 − 𝑥2
2 . Consider the problem

max
(𝑥1,𝑥2)∈ℝ2

𝑓 (𝑥1, 𝑥2)

subject to 𝑔1(𝑥1, 𝑥2) = 0

𝑔2(𝑥1, 𝑥2) = 0.

Clearly, the only point in ℝ2 that satisfies the constraints is (0, 0); so (0, 0) must be the unique
solution of the problem. Now

∇𝑓 (𝑥1, 𝑥2) = (0, 1), ∇𝑔1(𝑥1, 𝑥2) = (1, 0), and ∇𝑔2(𝑥1, 𝑥2) = (−1, −2𝑥2);

then ∇𝑔2(0, 0) = (−1, 0). By definition, the Jacobian matrix at (0, 0) is

𝐽 (0, 0) =
(

1 0
−1 0)
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whose rank is 1 < 2. As shown in Figure 9, there does not exist (𝜆1, 𝜆2) such that

∇𝑓 (0, 0) + 𝜆1∇𝑔1(0, 0) + 𝜆2∇𝑔2(0, 0) = 0;

in other words, although (0, 0) solves the original problem, it does not satisfy Equation (16),
namely the first-order condition of the Lagrangian.

6 Inequality constraints

As in Section 5, let 𝑆 be an open subset of ℝ𝑛, and let 𝑓 and 𝑔𝑗 , 𝑗 = 1,… ,𝑚, be real-valued contin-
uously differentiable functions defined on 𝑆. In this section, we turn to optimization problems of
the form

max
𝑥∈𝑆

𝑓 (𝑥), (18)

subject to 𝑔𝑗(𝑥) ≥ 0 for 𝑗 = 1,… ,𝑚.

Note that problem (6) we studied in Section 5 is really a special case of problem (18).

6.1 Necessity

For expository convenience, assume 𝑚 = 1, so there is only one constraint 𝑔(𝑥) ≥ 0, where
𝑔 ∶ 𝑆 → ℝ is a differentiable function. Now the problem simplifies to

max
𝑥∈𝑆

𝑓 (𝑥) (19)

subject to 𝑔(𝑥) ≥ 0.

For any 𝑥 ∈ 𝑆 satisfying the inequality constraint, we say that the constraint is binding if 𝑔(𝑥) = 0,
and slack (or nonbinding) if 𝑔(𝑥) > 0.

As in Section 5, define the LagrangianL by

L(𝑥 , 𝜆) = 𝑓 (𝑥) + 𝜆𝑔(𝑥).

For any 𝑥 ∗ ∈ 𝑆 that solves problem Equation (19), there are two possibilities:

• 𝑔(𝑥 ∗) = 0, so the constraint is binding at 𝑥 ∗; then if the constraint “moves” by a small amount
in the sense that it becomes

𝑔(𝑥) ≥ 𝜂
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Figure 10: The inequality constraint is binding (left panel) and slack (right panel).

for some 𝜂 could be positive or negative but close to zero, the 𝑥 ∗ might no longer be optimal.

• 𝑔(𝑥 ∗) > 0, so the constraint is slack at 𝑥 ∗; then the constraint “moves” by a small amount,
the solution is unaffected.

Therefore, if 𝑔(𝑥 ∗) = 0, we are back to the situation we faced in Section 5: under some regu-
larity conditions, we have5

∇𝑥L(𝑥 ∗, 𝜆∗) = (
𝜕L
𝜕𝑥1

(𝑥 ∗, 𝜆∗),
𝜕L
𝜕𝑥2

(𝑥 ∗, 𝜆∗), … ,
𝜕L
𝜕𝑥𝑛

(𝑥 ∗, 𝜆∗)) = 0.

Note that, in this case, we must have 𝜆∗ ≥ 0. Suppose to the contrary that 𝜆∗ < 0, then we know
from the discussion in Section 5.2 that letting 𝑔(𝑥) = 𝜂 for some 𝜂 positive but close to zero raises
the maximal value of 𝑓 (recall Equation (15)). That is, moving 𝑥 ∗ inside the constraint raises the
value of 𝑓 , contradicting the fact that 𝑥 ∗ is the solution of the problem.

And if 𝑔(𝑥 ∗) > 0, the solution is in the interior of the constraint set, hence we can appeal to
the results we developed in Section 3 to get that

∇𝑓 (𝑥 ∗) = (
𝜕𝑓
𝜕𝑥1

(𝑥 ∗),
𝜕𝑓
𝜕𝑥2

(𝑥 ∗), … ,
𝜕𝑓
𝜕𝑥𝑛

(𝑥 ∗)) = 0.

In this case, the value of 𝜆 does not enter the conditions, so we can choose any value for it. Given
the interpretation of the Lagrangian multiplier 𝜆, setting 𝜆∗ = 0 makes sense. This assumption

5The notation ∇𝑥L(𝑥∗, 𝜆∗)means the vector of partial derivatives of the functionLwith respect to the coordinates
of the vector 𝑥 evaluated at (𝑥∗, 𝜆∗).
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implies that
𝜕L
𝜕𝑥𝑘

(𝑥 ∗, 𝜆∗) =
𝜕𝑓
𝜕𝑥𝑘

(𝑥 ∗) = 0

for all 𝑘 = 1,… , 𝑛.
Thus, in both cases, we have ∇𝑥L(𝑥 ∗, 𝜆∗) = 0, 𝜆∗ ≥ 0, and 𝑔(𝑥 ∗) ≥ 0; and when the constraint

is binding we have 𝑔(𝑥 ∗) = 0, while 𝜆∗ = 0 holds when the constraint is slack. Then since the
product of two numbers is zero if and only if at least one of them is zero, we can combine the two
cases and get the following set of necessary conditions:

∇𝑥L(𝑥 ∗, 𝜆∗) = 0 (20)

𝜆∗ ≥ 0 (21)

𝑔(𝑥 ∗) ≥ 0 (22)

𝜆∗𝑔(𝑥 ∗) = 0 (23)

that is, if 𝑥 ∗ is a solution to problem (19), it must satisfy conditions (20) to (23). Equation (23)
suggests that either

(i) 𝜆∗ = 0 and 𝑔 (𝑥 ∗) ≥ 0, or

(ii) 𝜆∗ ≥ 0 and 𝑔 (𝑥 ∗) = 0;

(i) and (ii) are called complementary slackness conditions; note that it does not rule out the
possibility that both 𝜆∗ = 0 and 𝑔 (𝑥 ∗) = 0.

For a problem with many constraints (that is, 𝑚 ≥ 1), we may assign a Lagrangian multiplier
to each of the constraints to get the Lagrangian

L = 𝑓 (𝑥) +
𝑚
∑
𝑗=1

𝜆𝑗𝑔𝑗(𝑥);

Then we can apply our argument to each of the constraints to get an analogy of Theorem 4
for problems with inequality constraint. Before stating the result, we introduce some regularity
conditions, which are usually called constraint qualifications (CQ), which guarantee necessity.
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We summarize three most popular constraint qualifications:

(A) Let (𝑔𝐵1 , … , 𝑔𝐵𝑞 ) be the constraints that are binding at 𝑥 ∗, with 𝑞 ≤ 𝑚. Then 𝑞 ≤ 𝑛, and
the Jacobianmatrix of (𝑔𝐵1 , … , 𝑔𝐵𝑞 ) at the point 𝑥 ∗ has 𝑞 linearly independent columns.

(B) 𝑔𝑗 is convex for 𝑗 = 1,… ,𝑚.

(C) 𝑔𝑗 is concave for 𝑗 = 1,… ,𝑚 and Slater’s condition holds: there exists 𝑥̂ ∈ 𝑆 such
that 𝑔𝑗(𝑥̂) > 0 for all 𝑗 = 1,… ,𝑚.

Theorem 5 (Necessity, inequality constraints). Let 𝑆 be an open subset of ℝ𝑛, and let 𝑓 ∶ 𝑆 → ℝ
and 𝑔𝑗 ∶ 𝑆 → ℝ, 𝑗 = 1,… ,𝑚, be continuously differentiable functions. If 𝑥 ∗ ∈ 𝑆 and it is a solution
to problem

max
𝑥∈𝑆

𝑓 (𝑥)

subject to 𝑔𝑗(𝑥) ≥ 0 for 𝑗 = 1,… ,𝑚

and suppose at least one of the CQs listed above is satisfied. Then there exists 𝜆∗ = (𝜆∗1, … , 𝜆∗𝑚) ∈ ℝ𝑚
+

such that

∇𝑥L(𝑥 ∗, 𝜆∗) = 0, (24)

𝑔𝑗(𝑥 ∗) ≥ 0 for all 𝑗 = 1,… ,𝑚, and (25)

𝜆∗𝑗𝑔𝑗(𝑥
∗) = 0 for all 𝑗 = 1,… ,𝑚. (26)

Recall that all affine functions are convex, so if 𝑔𝑗 is convex for each 𝑖 = 1,… ,𝑚, constraint
qualification (B) is satisfied; so if that is the case,Theorem 5 tells us that the conditions (24), (25)
and (26) are necessary.

The following example, although a bit trivial, illustrates the important point that without
Slater’s condition, the constraint functions being concave itself (unless they are also convex, so
they are affine) does not guarantee that the conditions above are necessary.

Example 16. Consider the problem

max
𝑥∈ℝ

𝑥

s.t. − 𝑥2 ≥ 0.

Clearly, 𝑔(𝑥) = −𝑥2 is a concave function; and the only point that satisfies the constraint is 𝑥 = 0,
so it must be, trivially, the solution of the problem.
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Form the Lagrangian,
L = 𝑥 − 𝜆𝑥2,

and conditions (24), (25) and (26) for this Lagrangian are

1 − 2𝜆𝑥 = 0,

−𝑥2 ≥ 0,

−𝜆𝑥2 = 0.

However, the solution 𝑥 = 0 does not satisfy the first condition for any 𝜆 ≥ 0.

6.2 Sufficiency

We showed in Section 3.4 that the first-order conditions are sufficient for a global maximum if the
objective function is concave. For maximization problem with inequality constraints, we have a
similar result, but we need to impose some conditions on the constraints.

Theorem 6 (Sufficiency, concave objective function). Let 𝑆 be an open subset of ℝ𝑛, and let 𝑓 ∶
𝑆 → ℝ and 𝑔𝑗 ∶ 𝑆 → ℝ, 𝑗 = 1,… ,𝑚 be continuously differentiable functions. Suppose that

• 𝑓 is concave

• and 𝑔𝑗 is concave for each 𝑗 = 1,… ,𝑚,

then if there exist 𝑥 ∗ ∈ 𝑆 and 𝜆∗ ∈ ℝ𝑚
+ such that

∇𝑥L(𝑥 ∗, 𝜆∗) = 0, (27)

𝑔𝑗(𝑥 ∗) ≥ 0 for all 𝑗 = 1,… ,𝑚, (28)

𝜆∗𝑗𝑔𝑗(𝑥
∗) = 0 for all 𝑗 = 1,… ,𝑚, (29)

𝑥 ∗ solves the problem

max
𝑥∈𝑆

𝑓 (𝑥) (30)

subject to 𝑔𝑗(𝑥) ≥ 0 for 𝑗 = 1,… ,𝑚.

Proof. Form the Lagrangian

L(𝑥 , 𝜆) = 𝑓 (𝑥) +
𝑚
∑
𝑗=1

𝜆𝑗𝑔𝑗(𝑥). (31)
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For any fixed 𝜆 ∈ ℝ𝑛
+, since it is a nonnegative combination of concave functions, L is concave

in 𝑥 . Then by Proposition 6, because 𝑥 ∗ satisfies Equation (27), it must be a maximizer of L on 𝑆
for any fixed 𝜆 ∈ ℝ𝑛

+. And by Equation (28), 𝑥 ∗ is feasible for problem (30).
Take any 𝑥 ∈ 𝑆 satisfying Equation (28); because 𝑥 ∗ maximizesL for any 𝜆 ∈ ℝ𝑛

+, we have

L(𝑥 ∗, 𝜆∗) = 𝑓 (𝑥 ∗) +
𝑚
∑
𝑗=1

𝜆∗𝑗𝑔𝑗(𝑥
∗) ≥ 𝑓 (𝑥) +

𝑚
∑
𝑗=1

𝜆∗𝑗𝑔𝑗(𝑥) = L(𝑥 , 𝜆∗).

Then by Equation (29),

𝑓 (𝑥 ∗) = 𝑓 (𝑥 ∗) +
𝑚
∑
𝑗=1

𝜆∗𝑗𝑔𝑗(𝑥
∗) ≥ 𝑓 (𝑥) +

𝑚
∑
𝑗=1

𝜆∗𝑗𝑔𝑗(𝑥) ≥ 𝑓 (𝑥),

where the last inequality follows from the facts that 𝜆∗ ∈ ℝ𝑚
+ and 𝑔𝑗(𝑥) ≥ 0 for all 𝑗. Thus, 𝑥 ∗ solves

problem (30). ■

Recall that, if

• 𝑔𝑗 is affine for each 𝑗 = 1,… ,𝑚, or

• 𝑔𝑗 is concave for each 𝑗 = 1,… ,𝑚, and Slater’s condition holds, that is, there exists 𝑥̂ ∈ 𝑆
such that 𝑔𝑗(𝑥̂) > 0 for all 𝑗 = 1,… ,𝑚,

thenTheorem 5 implies that conditions (27) to (29) are also necessary for the problem.

Corollary 1 (Necessity and sufficiency). Let 𝑆 ⊆ ℝ𝑛 and let 𝑓 ∶ 𝑆 → ℝ and 𝑔𝑗 ∶ 𝑆 → ℝ,
𝑗 = 1,… ,𝑚 be continuously differentiable functions. Suppose that 𝑓 is concave, and

• either 𝑔𝑗 is affine for each 𝑗 = 1,… ,𝑚,

• or 𝑔𝑗 is concave for each 𝑗 = 1,… ,𝑚, and Slater’s condition holds,

then 𝑥 ∗ ∈ 𝑆 solves the problem

max
𝑥∈𝑆

𝑓 (𝑥)

subject to 𝑔𝑗(𝑥) ≥ 0 for 𝑗 = 1,… ,𝑚

if and only if there exists 𝜆∗ ∈ ℝ𝑚
+ such that conditions (27), (28), and (29) hold.

In fact,Theorem 6 holds under alternative assumptions.

Proposition 8 (Sufficiency, quasiconcave objective function). Let 𝑆 be an open subset of ℝ𝑛, and
let 𝑓 ∶ 𝑆 → ℝ and 𝑔𝑗 ∶ 𝑆 → ℝ, 𝑗 = 1,… ,𝑚 be continuously differentiable functions. Suppose that
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• 𝑓 is quasiconcave

• and 𝑔𝑗 is quasiconcave for each 𝑗 = 1,… ,𝑚.

If there exist 𝑥 ∗ ∈ 𝑆 and 𝜆∗ ∈ ℝ𝑚
+ such that (27), (28) and (29) hold, and it is not the case that

𝜕𝑓
𝜕𝑥𝑖

(𝑥 ∗) = 0 for 𝑖 = 1,… , 𝑛, then 𝑥 ∗ solves problem (30).

The proof of Proposition 8 is beyond the scope of this class, and hence omitted. Interested
reader are directed to Section 7.3 of Osborne (2016).

Example 17. Consider the problem

max
𝑥∈ℝ

− (𝑥 − 2)2

s.t. 𝑥 ≥ 3.

Since the objective function is concave and the constraint function is affine, so by Corollary 1,
the set of solutions of the problem is the set of solutions of conditions (27), (28) and (29).

Form the Lagrangian,
L = −(𝑥 − 2)2 + 𝜆(𝑥 − 3),

and the necessary and sufficient conditions are

−2(𝑥 − 2) + 𝜆 = 0,

𝑥 − 3 ≥ 0, 𝜆 ≥ 0,

𝜆(𝑥 − 3) = 0.

The complementary slackness condition implies that, either 𝜆 ≥ 0 and 𝑥 = 3, or 𝑥 ≥ 3 and 𝜆 = 0.
If 𝜆 = 0, then the first condition above implies that 𝑥 = 2, contradicts the second condition. If
𝑥 = 3, we have 𝜆 = 2, and all three conditions above are satisfied. Thus, the unique solution for
the problem is 𝑥 = 3.

You might feel that Example 17 is too simple, but it illustrates a general procedure for finding
solutions of the necessary conditions: We look at the complementary slackness conditions first,
which imply that either a Lagrangian multiplier is zero or a constraint is binding; then follow
through the implications of each case (in Example 17 there are two cases: (1) 𝜆 ≥ 0 and 𝑥 = 3, and
(2) 𝑥 ≥ 3 and 𝜆 = 0), using the other equations to determine whether it yields a solution or not.

In many cases, one might know some candidates for solutions to a problem. You can try to
prove your guess by finding corresponding multipliers that satisfy the sufficient conditions given
in the two corollaries below. Importantly, these results do not rely on differentiability of objective
function and constraint functions.
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Corollary 2. Let 𝑆 be an open subset of ℝ𝑛, and let 𝑓 ∶ 𝑆 → ℝ and 𝑔𝑗 ∶ 𝑆 → ℝ, 𝑗 = 1,… ,𝑚. If
there exist 𝑥 ∗ ∈ 𝑆 and 𝜆∗ ∈ ℝ𝑚

+ such that

L(𝑥 ∗, 𝜆∗) ≥ L(𝑥 , 𝜆∗) for all 𝑥 feasible for problem (30), (32)

𝑔𝑗(𝑥 ∗) ≥ 0 for all 𝑗 = 1,… ,𝑚, and

𝜆∗𝑗𝑔𝑗(𝑥
∗) = 0 for all 𝑗 = 1,… ,𝑚,

then 𝑥 ∗ is a solution to problem (30).

The proof of Corollary 2 is contained in the proof of Theorem 6: there we show that, using
differentiability and concavity assumptions, Equation (32) holds; for Corollary 2, we take (32) as
given, and derive the same result as inTheorem 6.

Corollary 3 (Saddlepoint condition). Let 𝑆 be an open subset of ℝ𝑛, and let 𝑓 ∶ 𝑆 → ℝ and
𝑔𝑗 ∶ 𝑆 → ℝ, 𝑗 = 1,… ,𝑚. Let the Lagrangian be

L(𝑥 , 𝜆) = 𝑓 (𝑥) +
𝑚
∑
𝑗=1

𝜆𝑗𝑔𝑗(𝑥).

If there exist 𝑥 ∗ ∈ 𝑆 and 𝜆∗ ∈ ℝ𝑚
+ such that

L(𝑥 ∗, 𝜆) ≥ L(𝑥 ∗, 𝜆∗) ≥ L(𝑥 , 𝜆∗), (33)

then 𝑥 ∗ is a solution to problem (30).

Proof. By Corollary 2, it suffices to show that if (33) holds, the three conditions in that corollary
hold. Observe that (32) is just “a part of” (33); the rest is left as an exercise. ■

6.3 Karush-Kuhn-Tucker (KKT) conditions

In economics and business, we frequently deal with some nonnegativity constraints: for example,
in most cases a consumer is not allowed to purchase negative amount of goods. In this section,
we introduce a convenient approach to deal with problems in which the choice variables are
constrained to be nonnegative.

Formally, let 𝑆 be an open subset of ℝ𝑛, and let 𝑓 and 𝑔𝑗 , 𝑗 = 1,… ,𝑚, be real-valued continu-
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ously differentiable functions defined on 𝑆 as before. Consider the problem

max
𝑥∈𝑆

𝑓 (𝑥) (34)

subject to 𝑔𝑗(𝑥) ≥ 0 for 𝑗 = 1,… ,𝑚

𝑥𝑘 ≥ 0 for 𝑘 = 1,… , 𝑛

it is not difficult to see that problem (34) is a special case of the class of problems we dealt with
earlier in this section: we can write problem (34) as

max
𝑥∈𝑆

𝑓 (𝑥)

subject to 𝑔𝑗(𝑥) ≥ 0 for 𝑗 = 1,… ,𝑚,𝑚 + 1,… ,𝑚 + 𝑛

where 𝑔𝑚+𝑘(𝑥) = 𝑥𝑘 for each 𝑘 = 1,… , 𝑛. Form the Lagrangian as before:

L = 𝑓 (𝑥) +
𝑚
∑
𝑗=1

𝜆𝑗𝑔𝑗(𝑥) +
𝑛
∑
𝑘=1

𝜈𝑘𝑔𝑚+𝑘(𝑥);

assuming that some constraint qualifications (say, one of (A), (B) and (C)) are satisfied, by Theo-
rem 5, the necessary conditions are

∇𝑥L(𝑥 ∗, 𝜆∗) = 0, (35)

𝜆∗𝑗 ≥ 0 for all 𝑗 = 1,… ,𝑚, (36)

𝜈 ∗𝑘 ≥ 0 for all 𝑘 = 1,… , 𝑛, (37)

𝑔𝑗(𝑥 ∗) ≥ 0 for all 𝑗 = 1,… ,𝑚 + 𝑛, (38)

𝜆∗𝑗𝑔𝑗(𝑥
∗) = 0 for all 𝑗 = 1,… ,𝑚, and (39)

𝜈 ∗𝑘𝑔𝑚+𝑘(𝑥 ∗) = 0 for all 𝑘 = 1,… , 𝑛. (40)

Now consider the Karush-Kuhn-Tucker (KKT) Lagrangian, which drops the third term (the
term related to nonnegative constraints) in the original Lagrangian:6

L𝐾𝐾𝑇 = 𝑓 (𝑥) +
𝑚
∑
𝑗=1

𝜆𝑗𝑔𝑗(𝑥). (41)

6To distinguish the KKT Lagrangian from the original one, we use L𝐾𝐾𝑇 to denote the former. When we use it,
however, we usually abuse notation and still denote it byL.
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Then Equation (43) implies that for each 𝑘 = 1,… , 𝑛, 7

𝜕L
𝜕𝑥𝑘

(𝑥 ∗) =
𝜕L𝐾𝐾𝑇

𝜕𝑥𝑘
(𝑥 ∗) + 𝜈 ∗𝑘 ;

equivalently,
L𝐾𝐾𝑇

𝜕𝑥𝑘
(𝑥 ∗) = −𝜈 ∗𝑘 (42)

for each 𝑘. Now (37), (40) and (42) together imply that

𝜕L𝐾𝐾𝑇

𝜕𝑥𝑘
(𝑥 ∗) ≤ 0 and 𝑥 ∗

𝑘
𝜕L𝐾𝐾𝑇

𝜕𝑥𝑘
(𝑥 ∗) = 0.

And for each 𝑗 = 1,… ,𝑚,
𝜕L𝐾𝐾𝑇

𝜕𝜆𝑗
(𝑥 ∗) = 𝑔𝑗(𝑥 ∗) ≥ 0,

where the inequality follows from (38); and the equality above implies that Equation (39) can be
written as

𝜆∗𝑗
𝜕L𝐾𝐾𝑇

𝜕𝜆𝑗
(𝑥 ∗) = 0.

Thus, conditions (35) to (40) together imply the following conditions for the KKT Lagrangian:

𝜕L𝐾𝐾𝑇

𝜕𝑥𝑘
(𝑥 ∗) ≤ 0, 𝑥 ∗

𝑘
𝜕L𝐾𝐾𝑇

𝜕𝑥𝑘
(𝑥 ∗) = 0, 𝑥 ∗ ≥ 0, (43)

𝜕L𝐾𝐾𝑇

𝜕𝜆𝑗
(𝑥 ∗) ≥ 0, 𝜆∗𝑗

𝜕L𝐾𝐾𝑇

𝜕𝜆𝑗
(𝑥 ∗) = 0, 𝜆∗ ≥ 0 (44)

for each 𝑘 = 1,… , 𝑛 and 𝑗 = 1,… ,𝑚. We call conditions (43) and (44) the Karush-Kuhn-Tucker
(KKT) conditions.

And if 𝑥 ∗ ∈ 𝑆 and 𝜆∗ ∈ ℝ𝑚
+ satisfy the KKT conditions, we can let

𝜈 ∗𝑘 = −
L𝐾𝐾𝑇

𝜕𝑥𝑘
(𝑥 ∗),

then by (43), we have 𝜈 ∗𝑘 ≥ 0 and 𝜈 ∗𝑘𝑥 ∗
𝑘 = 0 for all 𝑘 = 1,… , 𝑛, so we get (35) to (40) back.

Therefore, we conclude that if (𝑥 ∗, 𝜆∗, 𝜈 ∗) satisfies conditions (35) to (40), then (𝑥 ∗, 𝜆∗) satisfies
the KKT conditions, and if (𝑥 ∗, 𝜆∗) satisfies the KKT conditions, then we can find 𝜈 ∗ ∈ ℝ𝑛

+ such
that (𝑥 ∗, 𝜆∗, 𝜈 ∗) satisfies conditions (35) to (40). As a consequence, in optimization problems with
nonnegativity constraints, whenever conditions (35) to (40) can be used to solve the problem, we
may alternatively use the KKT conditions. In other words, whenever conditions (35) to (40) are
necessary, so are the KKT conditions; and whenever conditions (35) to (40) are sufficient, the KKT

7Again, we suppress variables 𝜆 and 𝜈 ofL to save notation.
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conditions are sufficient as well.

Example 18. Let 𝑢(𝑥1, 𝑥2) be the utility function of a consumer, and 𝑝𝑖 > 0 is the price of good 𝑖,
𝑤 > 0 is the consumer’s wealth or income. The consumer’s consumption choice problem is

max
(𝑥1,𝑥2)∈ℝ2

𝑢(𝑥1, 𝑥2)

s.t. 𝑝1𝑥1 + 𝑝2𝑥2 ≤ 𝑤

𝑥𝑘 ≥ 0 for 𝑘 = 1, 2.

The KKT Lagrangian for this problem is

L = 𝑢 (𝑥1, 𝑥2) + 𝜆 (𝑤 − 𝑝1𝑥1 − 𝑝2𝑥2) ,

and the KKT conditions are

𝜕𝑢
𝜕𝑥1

(𝑥 ∗) − 𝜆∗𝑝1 ≤ 0, 𝑥 ∗
1(

𝜕𝑢
𝜕𝑥1

(𝑥 ∗) − 𝜆∗𝑝1) = 0, 𝑥 ∗
1 ≥ 0,

𝜕𝑢
𝜕𝑥2

(𝑥 ∗) − 𝜆∗𝑝2 ≤ 0, 𝑥 ∗
2(

𝜕𝑢
𝜕𝑥2

(𝑥 ∗) − 𝜆∗𝑝2) = 0, 𝑥 ∗
2 ≥ 0,

𝑤 − 𝑝1𝑥 ∗
1 − 𝑝2𝑥 ∗

2 ≥ 0, 𝜆∗(𝑤 − 𝑝1𝑥 ∗
1 − 𝑝2𝑥 ∗

2) = 0, 𝜆∗ ≥ 0.

Example 19. Consider the problem

max
(𝑥1,𝑥2)∈ℝ2

𝑥1𝑥2

s.t. 𝑥1 + 𝑥2 ≤ 6

𝑥1 ≥ 0, 𝑥2 ≥ 0.

Observe that the constraint functions are affine, so the KKT conditions are necessary. Also, the
objective function is continuous and the constraint set is compact (draw a picture), so by the
extreme value theorem (Theorem 1), the problem has a solution. Thus the solutions of the problem
are the solutions of the KKT conditions that yield the highest values for the function. (Why?)

The KKT Lagrangian is
L = 𝑥1𝑥2 + 𝜆(6 − 𝑥1 − 𝑥2),
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and the KKT conditions are

𝑥 ∗
2 − 𝜆∗ ≤ 0, 𝑥 ∗

1(𝑥
∗
2 − 𝜆∗) = 0, 𝑥 ∗

1 ≥ 0,

𝑥 ∗
1 − 𝜆∗ ≤ 0, 𝑥 ∗

2(𝑥
∗
1 − 𝜆∗) = 0, 𝑥 ∗

2 ≥ 0,

6 − 𝑥 ∗
1 − 𝑥 ∗

2 ≥ 0, 𝜆∗(6 − 𝑥 ∗
1 − 𝑥 ∗

2) = 0, 𝜆∗ ≥ 0.

If 𝑥 ∗
1 > 0, since 𝑥 ∗

1(𝑥 ∗
2 − 𝜆∗) = 0, we must have 𝑥 ∗

2 = 𝜆∗. If 𝑥 ∗
2 = 𝜆∗ = 0, then 𝑥 ∗

1 − 𝜆∗ ≤ 0 implies
that 𝑥 ∗

1 ≤ 0, a contradiction. Thus, 𝑥 ∗
2 > 0, but then 𝑥 ∗

2(𝑥 ∗
1 − 𝜆∗) = 0 implies that 𝑥 ∗

1 = 𝜆∗ = 𝑥 ∗
2 > 0.

Because 𝜆∗ > 0, we have 6 − 𝑥 ∗
1 − 𝑥 ∗

2 = 0, so (𝑥 ∗
1, 𝑥 ∗

2, 𝜆∗) = (3, 3, 3).
If 𝑥 ∗

1 = 0, then if 𝑥 ∗
2 > 0 we have 𝜆∗ = 0 from the second line of the KKT conditions, but then

the first line contradicts 𝑥 ∗
2 > 0. Thus 𝑥 ∗

2 = 𝜆∗ = 0 from the third line.
Thus, there are two solutions of the KKT conditions, (3, 3, 3) and (0, 0, 0). Since the value

of the objective function at (3, 3) is greater than the value of the objective function at (0, 0), the
solution of the problem is (3, 3).

Although we have discussed many sufficiency theorems in Section 6.2, in many applications,
the assumptions of the theorems could be difficult to check, or just might not hold. For example,
checking concavity/quasiconcavity of an objective function of two variables is already annoying
(see the appendix of the real analysis lecture notes for details); it is just a nightmare for functions
of more variables.

The analysis in Example 19 suggests an alternative approach. Note that, so long as the objec-
tive function and the constraint functions are defined on an open subset of ℝ𝑛,8 whenever 𝑥 ∗ is
a solution to the problem, and some constraint qualifications hold, it must satisfy the conditions
therein. Thus, if the objective function is continuous and the constraint set is compact, then by
the extreme value theorem (Theorem 1), a solution must exist. Amongst these candidates, we
choose the ones that yield the highest values for the function, and these are the solutions of the
original problem. In most cases, there are not toomany points satisfying the necessary conditions
inTheorem 5, so comparing between the candidates should not be too difficult.

8Recall that, if 𝑆 is open, then 𝑆 = int𝑆; and ℝ𝑛 itself is open. In most applications, we have 𝑆 = ℝ𝑛 , so this
condition is rarely violated.
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Appendix

A Some linear algebra

Let 𝑠1, 𝑠2, … , 𝑠𝑚 ∈ ℝ𝑛, and let
𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑚}.

We say that a vector 𝑦 can be expressed as a linear combination of vectors in 𝑆 if there exist
𝛼1, 𝛼2, … , 𝛼𝑚 ∈ ℝ such that

𝑦 =
𝑚
∑
𝑗=1

𝛼𝑗𝑠𝑗 .

The set 𝑆 of vectors is said to be linearly independent if

𝑚
∑
𝑗=1

𝛼𝑗𝑠𝑗 = 0 implies 𝛼𝑗 = 0 for all 𝑗 = 1,… ,𝑚.

And the set 𝑆 is said to be linearly dependent if it is not linearly independent; that is, there
exist 𝛼1, 𝛼2, … , 𝛼𝑚 ∈ ℝ, not all zero, such that

𝑚
∑
𝑗=1

𝛼𝑗𝑠𝑗 = 0.

In words, a set of vectors is linearly dependent if at least one of its element can be expressed as
a linear combination of some other elements; and a set of vectors is linearly independent if none
of its element can be expressed as a linear combination of some other elements.

Example 20. Consider sets

𝑆 = {(0, 1, 0), (−2, 2, 0)} and 𝑇 = {(1, 1, 0), (0, −3, 1), (2, 5, −1)}.

Clearly, none of the elements in 𝑆 can be written as a linear combination of the other, hence it is
linearly independent. And for 𝑇 , observe that

(2, 5, −1) = 2(1, 1, 0) − (0, −3, 1),

hence it is linearly dependent.

For a finite set of vectors 𝑆, define its rank as the maximal number of linearly independent
vectors in 𝑆. Since a matrix can be viewed as a set containing all its columns, for a matrix 𝐴, its
rank is the maximal number of linearly independent columns. We usually denote the rank of a
matrix 𝐴 by rank𝐴.
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Example 21. Consider matrices

𝐴 =
(

1 −2
−2 4 )

, 𝐵 =
⎛
⎜
⎜
⎜
⎝

1 0 2
1 −3 5
0 1 −1

⎞
⎟
⎟
⎟
⎠

, 𝐶 =
⎛
⎜
⎜
⎜
⎝

1 0 2
1 −3 4
0 1 −1

⎞
⎟
⎟
⎟
⎠

.

It is not difficulty to see that rank𝐴 = 1: (−2, 4) = −2(1, −2), so the maximal number of linearly
independent columns is just one. By the argument in the previous example we know that the rank
of 𝐵 can be no more than two; and since (0, −3, 1) and (1, 1, 0) are linearly independent, rank𝐵 = 2.
Finally, because all three column vectors of 𝐶 are linearly independent, we have rank𝐶 = 3.
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