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These notes are intended to provide a brief introduction to some basic real analysis concepts
and results that are going to be useful in the rest of this class aswell asmanyfirst-year courses. See
footnotes for recommendations of some textbooks that can provide full details of the proofs that
we will sometimes omit. Note that, however, results with a proof need not to be more important
than results without a proof.

1 The space we work in

In the remainder of this class we are going to work in the space of all 𝑛-tuples of real numbers,
(𝑥1, 𝑥2, ..., 𝑥𝑛), where 𝑛 is a positive integer; we denote this space ℝ𝑛. An element of this space is
called a point in ℝ𝑛; a point is equivalent to a vector whose tail is at the origin and the tip is at
that point; so we sometimes use these two terms interchangeably. If 𝑧 ∈ ℝ𝑛, the 𝑗−th component
of 𝑧 will be denoted 𝑧𝑗 , where 𝑗 = 1,… , 𝑛; we call the set of points all of whose components are
nonnegative the nonnegative orthant, denote by ℝ𝑛

+. When 𝑛 = 1, we get the real line ℝ.
When 𝑛 = 1, the meaning of ≤, ≥, and = should be clear. If 𝑥 , 𝑦 ∈ ℝ𝑛, 𝑛 ≥ 2, we define

• 𝑥 = 𝑦 if 𝑥𝑖 = 𝑦𝑖 for all 𝑖,

• 𝑥 ≥ 𝑦 if 𝑥𝑖 ≥ 𝑦𝑖 for all 𝑖,

• 𝑥 > 𝑦 if 𝑥𝑖 ≥ 𝑦𝑖 for all 𝑖 with strict inequality for at least one component, and

• 𝑥 ≫ 𝑦 iff 𝑥𝑖 > 𝑦𝑖 for all 𝑖.

Next we define the notion of distance, and an important operation on ℝ𝑛.

Definition 1 (Distance). Let 𝑥 and 𝑦 be any two vectors inℝ𝑛. The (Euclidean) distance1 between
𝑥 and 𝑦, denote by 𝑑(𝑥 , 𝑦), is

𝑑(𝑥 , 𝑦) =

√
𝑛
∑
𝑗=1

(𝑥𝑗 − 𝑦𝑗)
2.

Observe that, for any 𝑢, 𝑣 ∈ ℝ,
𝑑(𝑢, 𝑣) = |𝑢 − 𝑣|;

and for any 𝑥 ∈ ℝ𝑛, we usually write 𝑑(𝑥 , 0) = ‖𝑥‖. If we take 𝑥 as an vector, its length is ‖𝑥‖.

Definition 2 (Inner product). The inner product of two vectors 𝑥 and 𝑦 is denoted 𝑥 ⋅ 𝑦 or 𝑥𝑦
and is defined as

𝑥 ⋅ 𝑦 =
𝑛
∑
𝑗=1

𝑥𝑗𝑦𝑗 .

1There are some other ways to define the distance between points, and they are all equivalent in ℝ𝑛 .
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For any set 𝑆 ⊆ ℝ, an upper bound of this set is a real number 𝑢 such that 𝑢 ≥ 𝑥 for all 𝑥 ∈ 𝑆,
and a lower bound of 𝑆 is a real number 𝓁 such that 𝓁 ≤ 𝑥 for all 𝑥 ∈ 𝑆. Next we formalize the
idea of “least upper bound” and “greatest lower bound”.

Definition 3 (Supremum and infimum). Given a subset 𝑆 ofℝ, 𝑠∗ ∈ ℝ∪{−∞,∞} is the supremum
of 𝑆, denoted sup 𝑆, if

• 𝑠∗ is an upper bound of 𝑆;

• 𝑢 ≥ 𝑠∗ for any upper bound 𝑢 of 𝑆.

And 𝑠∗ ∈ ℝ ∪ {−∞,∞} is the infimum of 𝑆, denoted inf 𝑆, if

• 𝑠∗ is an lower bound of 𝑆;

• 𝓁 ≤ 𝑠∗ for any lower bound 𝓁 of 𝑆.

Observation 1. A nonempty set of real numbers always have a unique supremum and a unique
infimum.

Example 1. Let 𝑆 = {𝑥 ∈ ℝ ∶ 0 < 𝑥 < 1}. Then sup 𝑆 = 1 and inf 𝑆 = 0.

Observation 2. Neither inf 𝑆 nor sup 𝑆 need to be an element of 𝑆.

2 Sequences

A sequence is a function whose domain is the set of natural numbers, ℕ = {1, 2, 3, 4, …}.2 In
these notes we require the codomain of a sequence to be ℝ𝑛; so a sequence is a specification of a
point 𝑥𝑘 ∈ ℝ𝑛 for each 𝑘 ∈ ℕ. We denote a sequence by (𝑥𝑘).

Definition 4 (Convergence of sequences). A sequence (𝑥𝑘) converges to 𝑥 ∈ ℝ𝑛 if, for all 𝜀 > 0,
there exists a 𝑁 ∈ ℕ such that 𝑑(𝑥𝑘 , 𝑥) < 𝜀 for all 𝑘 ≥ 𝑁 .

Remark 1. Note that 𝑁 in the definition above may depend on the chosen 𝜀.

If a sequence (𝑥𝑘) converges to 𝑥 , we say the sequence (𝑥𝑘) is convergent and 𝑥 is the limit
of (𝑥𝑘); we write lim

𝑘→∞
𝑥𝑘 = 𝑥 , or 𝑥𝑘 → 𝑥 . Intuitively, a sequence (𝑥𝑘) is convergent if there is

𝑥 ∈ ℝ𝑛 such that the later terms of the sequence get arbitrarily close to 𝑥 . A sequence (𝑥𝑘) is
called divergent if it does not converge.

And we say that a real sequence3 (𝑥𝑘) tends to infinity, written as lim
𝑘→∞

𝑥𝑘 = ∞, or 𝑥𝑘 → ∞,
if for every 𝑄 ∈ ℝ, there exists 𝑀 ∈ ℕ with 𝑥𝑘 ≥ 𝑄 for each 𝑘 ≥ 𝑀 .

2Some authors define the set of natural numbers as {0, 1, 2, 3, …}; this difference does not really make any differ-
ence in our class.

3A real sequence is a sequence that specifies a real number 𝑥𝑘 for each 𝑘 ∈ ℕ.
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Next we solve some simple examples. We claim that lim
𝑘→∞

(1/𝑘) = 0. To show this, pick an
arbitrary 𝜀 > 0, and ask if there is an 𝑁 ∈ ℕ large enough to guarantee that

||||
1
𝑘
− 0

||||
< 𝜀

for all 𝑘 ≥ 𝑁 . It suffices to pick any 𝑁 such that 𝑁 > 1/𝜀. And using the definition, it is not
difficult to check that, the sequence 𝑦𝑘 defined as

𝑦𝑘 = 𝑘 for all 𝑘 ∈ ℕ

tends to infinity.
The idea of convergence is that the tail of a sequence approximates its limit to any desired

degree of accuracy. Some initial finitely many terms of the sequence may be quite apart from its
limit, but eventually all terms of the sequence accumulates around this limit. To see this, let us
consider a sequence (𝑥𝑘) defined as

𝑥𝑘 =

{
𝑘 if 𝑘 ≤ 100;

1
𝑘−100 if 𝑘 > 100.

To show that lim𝑘→∞ 𝑥𝑘 = 0, we need to pick𝑁 large enough, larger than in the previous example;
in fact, we need to pick 𝑁 > (1/𝜀)+100. So although real sequences (1/𝑘) and 𝑥𝑘 appear to be quite
different in their first 100 terms, they have the same long-run behavior: they both converge to 0.
That is, the initial terms of the sequence have no say on the behavior of the tail of the sequence.

We summarize some basic properties of sequences below.

Claim 1. A sequence converges to at most one limit.
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Proof. Suppose (𝑥𝑘) is a sequence that converges to two limits 𝑥0 and 𝑦0 with 𝑥0 ≠ 𝑦0. Let

𝜀 =
𝑑(𝑥0, 𝑦0)

2
,

we have 𝜀 > 0 since 𝑥0 ≠ 𝑦0. Because 𝑥𝑘 → 𝑥0, there exists 𝑁1 ∈ ℕ such that 𝑑(𝑥𝑘 , 𝑥0) < 𝜀; and
since 𝑥𝑘 → 𝑦0, there exists 𝑁1 ∈ ℕ such that 𝑑(𝑥𝑘 , 𝑦0) < 𝜀. Now take 𝑁 = max{𝑁1,𝑁2}, then for
any 𝑚 > 𝑁 , we have

𝑑(𝑥0, 𝑦0) ≤ 𝑑(𝑥0, 𝑥𝑚) + 𝑑(𝑥𝑚, 𝑦0) < 𝜀 + 𝜀 = 𝑑(𝑥0, 𝑦0),

where the first inequality follows from the triangle inequality.4 We have thus reached at a con-
tradiction. ■

Next we establish some properties of convergent sequences.

Proposition 1 (Squeeze theorem). Let (𝑥𝑘), (𝑦𝑘) and (𝑧𝑘) be real sequences such that 𝑥𝑘 ≤ 𝑦𝑘 ≤ 𝑧𝑘

for each 𝑘 ∈ ℕ. If
lim
𝑘→∞

𝑥𝑘 = lim
𝑘→∞

𝑧𝑘 = 𝑎,

then lim
𝑘→∞

𝑦𝑘 = 𝑎.

We omit the proof of Proposition 1; see Figure 1 for an illustration.

Proposition 2. Let (𝑥𝑘) and (𝑦𝑘) be two real sequences such that 𝑥𝑘 → 𝑥 ∈ ℝ and 𝑦𝑘 → 𝑦 ∈ ℝ.
Then:

(1) ||𝑥
𝑘 || → |𝑥 |;

(2) 𝑥𝑘 + 𝑦𝑘 → 𝑥 + 𝑦 ;

(3) 𝑥𝑘𝑦𝑘 → 𝑥𝑦 ; and

(4) if 𝑥𝑘 ≠ 0 for all 𝑘 ∈ ℕ and 𝑥 ≠ 0,
𝑦𝑘

𝑥𝑘 →
𝑦
𝑥
.

4The triangle inequality states that, for any 𝑥 , 𝑦, 𝑧 ∈ ℝ𝑛 ,

𝑑(𝑥 , 𝑦) ≤ 𝑑(𝑥 , 𝑧) + 𝑑(𝑧, 𝑦),

which essentially comes from the geometric intuition that for any triangle, the sum of the lengths of any two sides
must be greater than or equal to the length of the remaining side. If 𝑥 , 𝑦, 𝑧 are real numbers, we get

|𝑥 − 𝑦 | ≤ |𝑥 − 𝑧| + |𝑧 − 𝑦 |.
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Figure 1: Illustration for the sandwich theorem (Proposition 1).

Proof (Sketch). For (1), use the inequality that5

||||𝑥
𝑘 | − |𝑥 |||| ≤ |𝑥𝑘 − 𝑥 |.

For (2), use the triangle inequality to get that

|(𝑥𝑘 + 𝑦𝑘) − (𝑥 + 𝑦)| = |(𝑥𝑘 − 𝑥) + (𝑦𝑘 − 𝑦)| ≤ |𝑥𝑘 − 𝑥 | + |𝑦𝑘 − 𝑦 |.

To prove (3), we use

|𝑥𝑛𝑦𝑛 − 𝑥𝑦 | = |𝑥𝑛𝑦𝑛 − 𝑥𝑦𝑛 + 𝑥𝑦𝑛 − 𝑥𝑦 |

≤ |𝑥𝑛𝑦𝑛 − 𝑥𝑦𝑛| + |𝑥𝑦𝑛 − 𝑥𝑦 |

= |𝑥𝑛 − 𝑥 | |𝑦𝑛| + |𝑥 ||𝑦𝑛 − 𝑦 |

We omit the proof of (4); see, e.g., Rudin (1976), page 50,Theorem 3.3. ■

Definition 5. (Bounded sequences) A real sequence (𝑥𝑘) is bounded if there exists 𝐾 ∈ ℝ with
|𝑥𝑘 | ≤ 𝐾 for all 𝑘 ∈ ℕ.

Claim 2. Every convergent real sequence is bounded.

Proof. Exercise. ■
5For any 𝑥 , 𝑦 ∈ ℝ, we have

|𝑥 | = |𝑥 − 𝑦 + 𝑦 | ≤ |𝑥 − 𝑦 | + |𝑦 |;

where the inequality follows from the triangle inequality. Hence, |𝑥 | − |𝑦 | ≤ |𝑥 − 𝑦 |; similarly, we can show that
|𝑦 | − |𝑥 | ≤ |𝑥 − 𝑦 |. Combining the two inequality above yields

||||𝑥 | − |𝑦 |||| ≤ |𝑥 − 𝑦 |.
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3 Topological properties

Definition 6 (Open ball). An open ball of radius 𝜀 > 0 centered at 𝑥 , denote by 𝐵(𝑥 , 𝜀) is the set

{𝑦 ∈ ℝ𝑛 ∶ 𝑑(𝑥 , 𝑦) < 𝜀}.

Definition 7 (Open and closed sets). A set 𝑆 ⊆ ℝ𝑛 is called open if for every 𝑥 ∈ 𝑆 there is an
𝜀 > 0 such that any 𝑦 within distance of 𝜀 of 𝑥 , that is, 𝑑(𝑥 , 𝑦) < 𝜀, is in 𝑆. A set 𝑇 ⊆ ℝ𝑛 is closed
if the complement of 𝑇 , 𝑇 𝑐 , is open.

Equivalently, a set 𝑆 is open if for any 𝑥 ∈ 𝑆, there exists an open ball 𝐵(𝑥 , 𝜀) such that

𝐵(𝑥 , 𝜀) ⊆ 𝑆.

Observation 3. The empty set ∅ and ℝ𝑛 are both open and closed.

Claim 3. An open ball is an open set.

Proof. Exercise. ■

The following characterization of closed sets is proved useful.

Proposition 3. A set 𝑆 ⊆ ℝ𝑛 is closed if and only if for any convergent sequence (𝑥𝑘) in 𝑆, its limit
lim
𝑘→∞

𝑥𝑘 is in 𝑆 as well.

Proof. For the “if” direction, let (𝑥𝑘) be a convergent sequence in 𝑆 with lim
𝑘→∞

𝑥𝑘 ∈ 𝑆. To show that
𝑆 is closed, it suffices to show that 𝑆𝑐 is open. That is, we need to show that for all 𝑥 ∈ 𝑆𝑐 , there
is an 𝜀 > 0 such that 𝐵(𝑥 , 𝜀) ⊆ 𝑆𝑐 . Suppose not, then for each 𝜀 > 0, there exists 𝑦 ∈ 𝑆𝑐 such that

𝐵(𝑦, 𝜀) ∩ 𝑆 ≠ ∅.

In particular, for each positive integer 𝑘, there is an element 𝑦𝑘 of 𝑆 in 𝐵(𝑦, 1/𝑘). Then the sequence
(𝑦𝑘) is in 𝑆 and converges to 𝑦 since

𝑑(𝑦𝑘 , 𝑦) < 1/𝑘.

But then we get 𝑦 ∈ 𝑆, contradicts to the fact that 𝑦 ∈ 𝑆𝑐 . Thus, 𝑆 is closed.
To prove the “only if” direction, let 𝑆 be closed, and let (𝑥𝑘) be a convergent sequence in 𝑆

with 𝑥𝑘 → 𝑥 . We show that 𝑥 ∈ 𝑆. Suppose not, so 𝑥 ∈ 𝑆𝑐 . But because 𝑆 is closed, 𝑆𝑐 is open; so
there exists 𝜀 > 0 such that for all 𝑦 with 𝑑(𝑥 , 𝑦) < 𝜀, 𝑦 ∈ 𝑆. But then since 𝑥𝑘 → 𝑥 , there exists
𝑁 ∈ ℕ such that 𝑑(𝑥 , 𝑥𝑘) < 𝜀 whenever 𝑘 ≥ 𝑁 . This implies that (𝑥𝑘) is not completely contained
in 𝑆, a contradiction. Therefore, whenever (𝑥𝑘) is a convergent sequence completely contained in
a closed set 𝑆, its limit is also contained in 𝑆. ■
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An important class of open and closed sets are called intervals. Given two real numbers 𝑎, 𝑏
with 𝑎 < 𝑏, the closed interval [𝑎, 𝑏] is the set {𝑥 ∈ ℝ ∶ 𝑎 ≤ 𝑥 ≤ 𝑏}. The open interval (𝑎, 𝑏) is the
set {𝑥 ∈ ℝ ∶ 𝑎 < 𝑥 < 𝑏}. The following two examples show that a closed interval is indeed closed,
and an open interval is indeed open.

Example 2. 𝑆 = {𝑥 ∈ ℝ ∶ 0 < 𝑥 < 1} = (0, 1) is open. To see this, pick any 𝑥 ∈ 𝑆. Define

𝜀 = min{|𝑥 |, |𝑥 − 1|},

it is not difficult to see that (𝑥 − 𝜀, 𝑥 + 𝜀) ⊆ (0, 1), hence (0, 1) is open. And by definition,

𝑆𝑐 = (−∞, 0] ∪ [1,∞)

is closed.

Example 3. [0, 1] is closed. We use Proposition 3 to prove this assertion: let (𝑥𝑘) be a convergent
sequence in [0, 1] with lim

𝑘→∞
𝑥𝑘 = 𝑥0. Suppose 𝑥0 ∉ [0, 1]; say, 𝑥0 > 1. Pick 𝜀 = (𝑥0 − 1)/2 > 0. Since

lim
𝑘→∞

𝑥𝑘 = 𝑥0, for all 𝜀 > 0 there exists an integer 𝑁 such that |𝑥𝑘 − 𝑥0| ≤ 𝜀 for all 𝑘 > 𝑁 . For our
choice of 𝜀, this implies 𝑥𝑘 > 1 for all 𝑘 > 𝑁 , contradicting that 𝑥𝑘 ∈ [0, 1] for all 𝑘.

Example 4. 𝑆 = {𝑥 ∈ ℝ ∶ 0 < 𝑥 ≤ 1} = (0, 1] is neither open nor closed. The sequence (1/𝑘) is
in 𝑆, but it converges to 0 which is not in this set, so 𝑆 is not closed. However, there is no 𝜀 > 0
sufficiently small such that every point within distance 𝜀 from 1 is in 𝑆. Thus, 𝑆 is not open.

Observation 4. If 𝑆 ⊆ ℝ is closed, the infimum and supremum of 𝑆 are in 𝑆: they coincide with the
smallest and largest member of 𝑆, respectively.

The following proposition summarizes some useful facts about open and closed sets.

Proposition 4. The union of any number of open sets is open, and the intersection of finitely many
open sets is open. The intersection of any number of closed sets is closed, and the union of finitely
many closed sets is closed.

Proof. For the first part of the first statement, let {𝑆𝑖}𝑖∈𝐼 be a collection of open sets. Denote

𝑆 = ⋃
𝑖∈𝐼
𝑆𝑖 .

Suppose 𝑥 ∈ 𝑆, then 𝑥 ∈ 𝑆𝑖 for some 𝑗 ∈ 𝐼 . Since 𝑆𝑗 is open, there is an open ball 𝐵(𝑥 , 𝜀) such that
𝐵(𝑥 , 𝜀) ⊆ 𝑆𝑗 . Then because 𝑆𝑗 ⊆ 𝑆, we have 𝐵(𝑥 , 𝜀) ⊆ 𝑆, so 𝑆 is open.

7



For the second part of the first statement, let {𝑇𝑖}𝑚𝑖=1 be a finite collection of open sets. Denote

𝑇 =
𝑚
⋂
𝑖=1

𝑇𝑖 .

Let 𝑥 ∈ 𝑇 , then 𝑥 ∈ 𝑇𝑖 for all 𝑖 = 1,… , 𝑛. Since each 𝑇𝑖 is open, for each 𝑖 there is an 𝜀𝑖 such that
open ball 𝐵(𝑥 , 𝜀𝑖) ⊆ 𝑇𝑖 . Let 𝜀 = min𝑖 𝜀𝑖; then the open ball 𝐵(𝑥 , 𝜀) is contained in each 𝐵(𝑥 , 𝜀𝑖), and
therefore is contained in each 𝑇𝑖 . Thus, 𝐵(𝑥 , 𝜀) ⊆ 𝑇 , so 𝑇 is an open set.

The second statement follows from the first part and the De Morgan’s law. (How?) ■

We also define the interior and closure of a set.

Definition 8. A point 𝑥 ∈ 𝑆 is an interior point of 𝑆 if there exists 𝜀 > 0 such that {𝑦 ∈ ℝ𝑛 ∶
𝑑(𝑥 , 𝑦) < 𝜀} ⊆ 𝑆. The interior of 𝑆, denoted int(𝑆), is the set of all interior points of 𝑆.

Definition 9. The closure of a set 𝑆, denote by cl(𝑆) is the set 𝑆 combined with all points that
are the limits of sequences of points in 𝑆.

Observation 5. If 𝑆 ⊆ ℝ𝑛 is open, 𝑆 = int(𝑆); if 𝑇 ⊆ ℝ𝑛 is closed, 𝑇 = cl(𝑇 ).

Example 5. The interior of (0, 1) is (0, 1), and the closure of (0, 1) is [0, 1]; the interior of [0, 1] is
(0, 1), and the closure of [0, 1] is [0, 1].

Definition 10 (Boundedness and compactness). A set 𝑆 ⊆ ℝ𝑛 is bounded if there exists a real
number 𝑟 such that ‖𝑥‖ ≤ 𝑟 for all 𝑥 ∈ 𝑆. S is compact if it is closed and bounded.

Example 6. Let 𝑎, 𝑏 ∈ ℝ. By taking 𝑟 = max{|𝑎|, |𝑏|}, we see that the closed interval [𝑎, 𝑏] is
bounded, hence it is also compact. ℝ is closed but not compact, so is

{(𝑥 , 𝑦) ∈ ℝ2 ∶ 𝑥 + 𝑦 ≤ 0}.

4 Continuity

4.1 Limits of functions

Definition 11 (Limits of functions). Let 𝑆 ⊆ ℝ𝑛, and let 𝑓 ∶ 𝑆 → ℝ. We say that 𝑞 ∈ ℝ is the
limit of 𝑓 at 𝑥0 ∈ 𝑆, and write

lim
𝑥→𝑥0

𝑓 (𝑥) = 𝑞,

if 𝑞 is such that for every 𝜀 > 0 there exists a 𝛿 > 0 such that whenever 𝑑(𝑥 , 𝑥0) < 𝛿 , we have
|𝑓 (𝑥) − 𝑞| < 𝜀. If we cannot find such 𝑞, we say that the limit of 𝑓 does not exist at 𝑥0.
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Roughly speaking, the limit of 𝑓 at 𝑥0 is 𝑞 if whenever 𝑥 is sufficiently close to 𝑥0, 𝑓 (𝑥) be-
comes arbitrarily close to 𝑞. Limits of functions can be equivalently defined in terms of limits of
sequences.

Proposition 5. Let 𝑆 ⊆ ℝ𝑛, and let 𝑓 ∶ 𝑆 → ℝ. Then lim
𝑥→𝑥0

𝑓 (𝑥) = 𝑞 if and only if for every sequence

(𝑥𝑘) in 𝑆 such that 𝑥𝑘 → 𝑥0, we have lim
𝑛→∞

𝑓 (𝑥𝑘) = 𝑞.

Proof. Suppose lim
𝑥→𝑥0

𝑓 (𝑥) = 𝑞, and let (𝑥𝑘) be a sequence in 𝑆 for all 𝑘 and 𝑥𝑘 → 𝑥0. Fix any 𝜀 > 0.
Since lim

𝑥→𝑥0
𝑓 (𝑥) = 𝑞, there exists 𝛿 > 0 such that |𝑓 (𝑥) − 𝑞| < 𝜀 whenever 𝑑(𝑥 , 𝑥0) < 𝛿 . But then

since 𝑥𝑘 → 𝑥0, there exists 𝑀 ∈ ℕ such that whenever 𝑘 ≥ 𝑀 we have 𝑑(𝑥𝑘 , 𝑥0) < 𝛿 . Thus,
|𝑓 (𝑥𝑘) − 𝑞| < 𝜀 for all 𝑘 ≥ 𝑀 ; consequently, lim

𝑛→∞
𝑓 (𝑝𝑛) = 𝑞.

Conversely, suppose lim
𝑥→𝑥0

𝑓 (𝑥) = 𝑞 does not hold. Then by definition, there exists 𝜀 > 0 such

that for every 𝛿 > 0 there exists a point 𝑥 ∈ 𝑆 with 𝑑(𝑥 , 𝑥0) < 𝛿 but |𝑓 (𝑥) − 𝑞| ≥ 𝜀. Letting (𝛿𝑘) be
defined by 𝛿𝑘 = 1/𝑘, then for each 𝑘 ∈ ℕ we can find 𝑥𝑘 with 𝑑(𝑥𝑘 , 𝑥0) < 1/𝑘 but |𝑓 (𝑥𝑘) − 𝑞| ≥ 𝜀,
and the resulting sequence (𝑥𝑘) converges to 𝑥0 but (𝑓 (𝑥𝑘)) does not converge to 𝑞. ■

Corollary 1 follows from Claim 1 and Proposition 5.

Corollary 1. Let 𝑆 be a subset of ℝ𝑛. If 𝑓 ∶ 𝑆 → ℝ has a limit at 𝑥0 ∈ ℝ, then this limit is unique.

Example 7. Let 𝑓 ∶ [0, 2] → ℝ be defined by

𝑓 (𝑥) =
⎧⎪⎪
⎨⎪⎪⎩

(𝑥 − 1)2 + 1 if 0 ≤ 𝑥 < 1 or 1 < 𝑥 ≤ 2,

2 if 𝑥 = 1;
(1)

see Figure 2 for its graph. By definition, the limit of 𝑓 does not exist at 𝑥 = 1.

The next result is an immediate consequence of Proposition 2 and Proposition 5.

Proposition 6. Let 𝑆 ⊆ ℝ𝑛 and 𝑥0 ∈ 𝑆. Let 𝑓 and 𝑔 be real-valued functions on 𝑆 and

lim
𝑥→𝑥0

𝑓 (𝑥) = 𝐴, lim
𝑥→𝑥0

𝑔(𝑥) = 𝐵.

Then

(1) lim
𝑥→𝑥0

[𝑓 (𝑥) + 𝑔(𝑥)] = 𝐴 + 𝐵;

(2) lim
𝑥→𝑥0

𝑓 (𝑥)𝑔(𝑥) = 𝐴𝐵; and

(3) if 𝐵 ≠ 0,

lim
𝑥→𝑥0

𝑓 (𝑥)
𝑔(𝑥)

=
𝐴
𝐵
.
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𝑂 𝑥

𝑦

1

𝑓 (𝑥)
1

2

Figure 2: The graph of the function 𝑓 defined by Equation (1).

4.2 Continuous functions

Definition 12 (Continuity). Let 𝑆 be a subset of ℝ𝑛. A real valued function 𝑓 ∶ 𝑆 → ℝ is
continuous at 𝑥 if for any 𝜀 > 0, there exists 𝛿 > 0 such that for all 𝑦 ∈ ℝ𝑛 with 𝑑(𝑥 , 𝑦) < 𝛿 , we
have |𝑓 (𝑥) − 𝑓 (𝑦)| < 𝜀. And 𝑓 is continuous if it is continuous at all 𝑥 in 𝑆.

Observation 6. Let 𝑆 be a subset of ℝ𝑛. 𝑓 ∶ 𝑆 → ℝ is continuous at 𝑥0 ∈ 𝑆 if and only if lim
𝑥→𝑥0

𝑓 (𝑥)
exists.

Intuitively, if 𝑓 is continuous at 𝑥 , it maps points nearby 𝑥 to points are close to 𝑓 (𝑥). To make
sure that you understand the definition, verify that the following functions are continuous:

• 𝑓 ∶ ℝ → ℝ defined by 𝑓 (𝑥) = 𝑥 ;

• 𝑔 ∶ ℝ → ℝ defined by 𝑔(𝑥) = 𝑥2.

Example 8. 𝑓 (𝑥) = |𝑥 | is continuous. Observe that we can write 𝑓 (𝑥) as

𝑓 (𝑥) =
⎧⎪⎪
⎨⎪⎪⎩

−𝑥 if 𝑥 < 0,

𝑥 if 𝑥 ≥ 0;

so since both 𝑥 and −𝑥 are continuous, it suffices to check that 𝑓 is continuous at 𝑥 = 0. Fix any
𝜀 > 0, let 𝛿 = 𝜀; then whenever |𝑦 − 0| < 𝛿 = 𝜀, or 𝑦 ∈ (−𝛿 , 𝛿), we have

|𝑓 (𝑦) − 𝑓 (0)| = |𝑦 | = |𝑦 − 0| < 𝛿 = 𝜀,

which shows that 𝑓 is continuous at 𝑥 = 0.
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Now consider 𝑔 ∶ ℝ → ℝ defined as

𝑔(𝑥) =
⎧⎪⎪
⎨⎪⎪⎩

0 if 𝑥 < 0,

1 if 𝑥 ≥ 0,

we claim that this function is not continuous. At 𝑥 = 0, so long as 𝜀 < 1, no matter how small 𝛿
we choose, we are not able to find 𝑦 ∈ (−𝛿 , 0) ⊆ (−𝛿 , 𝛿) such that |𝑓 (𝑦) − 𝑓 (𝑥)| < 𝜀.

Definition 13 (Sequential continuity). Let 𝑆 be a subset of ℝ𝑛. A function 𝑓 ∶ 𝑆 → ℝ is sequen-
tially continuous at 𝑥 if for any sequence (𝑥𝑘) in 𝑆 that converges to 𝑥 , it holds that

lim
𝑘→∞

𝑓 (𝑥𝑘) = 𝑓 (𝑥).

And 𝑓 is sequentially continuous if it is sequentially continuous at all 𝑥 in 𝑆.

Observation 7. Let 𝑆 be a subset of ℝ𝑛. 𝑓 ∶ 𝑆 → ℝ is sequentially continuous at 𝑥0 ∈ 𝑆 if and only
if lim

𝑥→𝑥0
𝑓 (𝑥) exists.

The following important equivalence result follows from Observation 6 and Observation 7.

Theorem 1. Let 𝑆 be a subset of ℝ𝑛. A function 𝑓 ∶ 𝑆 → ℝ is continuous at 𝑥 if and only if it is
sequentially continuous at 𝑥 .

Intuitively,Theorem 1 says that continuity of 𝑓 allows exchanging “𝑓 ” and “lim”:

lim
𝑘→∞

𝑓 (𝑥𝑘) = 𝑓 (𝑥) = 𝑓 ( lim
𝑘→∞

𝑥𝑘
) .

The equivalence of continuity and sequential continuity in ℝ𝑛 gives us a handy way to prove that
a function is not continuous: in many cases, it is easier to check a function fails to be sequential
continuous. Recall a function we discussed in Example 8:

𝑔(𝑥) =
⎧⎪⎪
⎨⎪⎪⎩

0 if 𝑥 < 0,

1 if 𝑥 ≥ 0.

It is easy to see that 𝑔 is not sequentially continuous at 𝑥 = 0: sequence (𝑥𝑘) defined by 𝑥𝑘 = −1/𝑘
converges to 0, but

lim
𝑘→∞

𝑔(−1/𝑘) = 0 ≠ 1 = 𝑔(0).
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4.3 Properties of continuous functions

Theorem 2 shows that the sum, product, and quotient (provided well-defined) of continuous func-
tions is continuous; and a continuous function of a continuous function is continuous.

Theorem 2. Let 𝑓 and 𝑔 be continuous real-valued functions. Then

(1) if 𝑓 and 𝑔 are defined on 𝑇 ⊆ ℝ𝑛, 𝑓 + 𝑔 and 𝑓 𝑔 are continuous; 𝑓 /𝑔 is also continuous provided
that 𝑔(𝑥) ≠ 0 for all 𝑥 ∈ 𝑇 ;

(2) let 𝑆 ⊆ ℝ𝑛 and 𝑄 ⊆ ℝ; if 𝑓 and 𝑔 are defined on 𝑆 and 𝑄, respectively, with 𝑓 (𝑆) ⊆ 𝑄, then 𝑓 ◦𝑔
is continuous.

Proof. Continuity of 𝑓 + 𝑔, 𝑓 𝑔 and 𝑓 /𝑔 (assume it is well-defined) follow from Proposition 6 and
Observation 6. Define ℎ = 𝑓 ◦𝑔, it remains to show that ℎ is continuous. The proof of this fact is
left as an exercise. ■

An immediate consequence of Theorem 2 is that, if 𝑓 ∶ ℝ𝑛 → ℝ is a continuous real-valued
function and 𝑐 is a real number, 𝑔(𝑥) = 𝑐𝑓 (𝑥) is continuous. A polynomial is a function of a single
variable 𝑥 of the form 𝑎0+𝑎1𝑥+𝑎2𝑥2+…+𝑎𝑘𝑥𝑘 ,where 𝑘 is a nonnegative integer and 𝑎0, … , 𝑎𝑘 ∈ ℝ.
Because the function 𝑓 defined by 𝑓 (𝑥) = 𝑥 for all 𝑥 ∈ ℝ is continuous,Theorem 2 implies that all
polynomials are continuous. (Why?)

Next we state the celebrated intermediate value theorem, a simple but powerful result that
are implied by continuity on an interval.6

Theorem 3 (Intermediate value theorem). Let 𝑎, 𝑏 ∈ ℝ with 𝑎 < 𝑏. If 𝑓 ∶ [𝑎, 𝑏] → ℝ is a
continuous function, then for any 𝑠 ∈ (𝑓 (𝑎), 𝑓 (𝑏)), there exists 𝑥 ∈ (𝑎, 𝑏) such that

𝑓 (𝑥) = 𝑠.

For a proof, see, for example, de la Fuente (2000), page 76, Theorem 6.24; for an illustration,
see Figure 3.

Another powerful result, which is implied by continuity and compactness of the domain, is
the extreme value theorem. Due to its importance in optimization theory, we defer the discussion
until the next module.

6For more general spaces, we need to require connectedness of the domain. We do not discuss connectedness in
these notes; see, for example, Section D.2 of Ok (2007) for details.
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Figure 3: An illustration for the intermediate value theorem (Theorem 3).

5 Differentiation

In this section we mainly work on differentiation of univariate functions, that is, functions that
map subsets of the real line to the reals. We also briefly present some definitions and a key result
about differentiation of multivariate functions for future reference.

5.1 Definition, properties, and implications

Let 𝐼 = (𝑎, 𝑏) be an open interval, and let 𝑓 ∶ 𝐼 → ℝ. 𝑓 is differentiable at 𝑥0 ∈ 𝐼 if

lim
ℎ→0

𝑓 (𝑥0 + ℎ) − 𝑓 (𝑥0)
ℎ

exists. The derivative of 𝑓 at 𝑥0, denoted 𝑓 ′(𝑥0), or d𝑓
d𝑥 (𝑥0), is this limit. The function 𝑓 is said

to be differentiable if it is differentiable at each point in 𝐼 . In this case the derivative of 𝑓 is
defined as the function 𝑓 ′ ∶ 𝐼 → ℝ that maps each 𝑥 ∈ 𝐼 to the derivative of 𝑓 at 𝑥 . If 𝑓 ′ is
also differentiable, then 𝑓 is said to be twice differentiable, and the second derivative of 𝑓 is
defined as the function 𝑓 ′′ ∶ 𝐼 → ℝ that maps each 𝑥 ∈ 𝐼 to the derivative of 𝑓 ′ at 𝑥 .

The derivative of a function of a single variable at a point 𝑥0 in its domain, when it exists, is
the slope of the tangent line to the graph of the function at 𝑥0. For a small change in 𝑥 , denote by
Δ𝑥 = ℎ, the rate of change is defined as the ratio of the the change in a function of a variable to
that of the variable; that is,

rate of change =
Δ𝑦
Δ𝑥

=
𝑓 (𝑥0 + ℎ) − 𝑓 (𝑥0)

ℎ
;

by definition, the derivative of 𝑓 at 𝑥0 is the limit of the rate of change as Δ𝑥 approaches zero.
For this reason, the derivative is often described as the “instantaneous rate of change”, the ratio
of the instantaneous change in 𝑦 = 𝑓 (𝑥) to that of 𝑥 .

Proposition 7 shows that differentiable is a “stronger” requirement than continuous.
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Figure 4: The derivative of a function at a point 𝑥 is the limit (as ℎ → 0) of secants to curve
𝑦 = 𝑓 (𝑥) determined by points (𝑥 , 𝑓 (𝑥)) and (𝑥 + ℎ, 𝑓 (𝑥 + ℎ)); equivalently, it is the slope of the
tangent line at (𝑥 , 𝑓 (𝑥)).
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Proposition 7. Let 𝑓 ∶ (𝑎, 𝑏) → ℝ If 𝑓 is differentiable at 𝑥 ∈ (𝑎, 𝑏), then it is continuous at 𝑥 .

Proof. Observe that

lim
ℎ→0

[𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)] = lim
ℎ→0

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

⋅ lim
ℎ→0

ℎ = 𝑓 ′(𝑥) ⋅ 0 = 0, (2)

then Observation 6 implies that 𝑓 is continuous at 𝑥 . ■

It is easy to find functions that are continuous at a point but not differentiable. An example
is 𝑓 (𝑥) = |𝑥 |: it is continuous (recall Example 8) but not differentiable at 0. To see why, let

𝑔(ℎ) =
𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)

ℎ
;

to show that 𝑓 is not differentiable at 0, it suffices to show that the limit of 𝑔 at 0 does not exist.
And observe that, by Proposition 5, to show that the limit of a function 𝑔 ∶ ℝ → ℝ does not exist
at a point 𝑥0, it suffices to show that there exist two sequences 𝑦𝑛 and 𝑧𝑛 in ℝ, both converge to
𝑥0, but lim

𝑛→∞
𝑔(𝑦𝑛) ≠ lim

𝑛→∞
𝑔(𝑧𝑛). Pick (𝑦𝑛) = (1/𝑛) and (𝑧𝑛) = (−1/𝑛), we see that both sequences

converge to 0, 𝑔(𝑦𝑛) = 1 for all 𝑛 ∈ ℕ, and 𝑔(𝑧𝑛) = −1 for all 𝑛 ∈ ℕ, hence

lim
𝑛→∞

𝑔(𝑦𝑛) = 1 ≠ −1 = lim
𝑛→∞

𝑔(𝑧𝑛).

Consequently, the limit of 𝑔 does not exist at ℎ = 0, so 𝑓 (𝑥) = |𝑥 | is not differentiable at 𝑥 = 0.
For some complicated functions, computing derivatives using definition could be a tricky and

daunting task. The following few results provide some “shortcuts” for it. Using the definition, we
can calculate the following formulas for the derivative of specific functions, where 𝑎, 𝑛, and 𝑘 are
constants.7

𝑓 (𝑥) 𝑓 ′(𝑥)
𝑘 0
𝑘𝑥𝑛 𝑘𝑛𝑥𝑛−1

log 𝑥 1/𝑥
𝑒𝑥 𝑒𝑥

𝑎𝑥 𝑎𝑥 log 𝑎
cos 𝑥 − sin 𝑥
sin 𝑥 cos 𝑥

We do not attempt to prove all of the derivatives in the table above; instead, we find the
7Whenever I use “log” I mean natural log–this is the only kind of logarithms that is relevant in economics and

business.
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derivative of 𝑓 = 𝑥2 as an example to fix ideas. By definition, fix any 𝑦 ∈ ℝ, we have

lim
ℎ→0

(𝑦 + ℎ)2 − 𝑦2

ℎ
= lim

ℎ→0

𝑦2 + 2ℎ𝑦 + ℎ2 − 𝑦2

ℎ
= lim

ℎ→0

2ℎ𝑦 + ℎ2

ℎ
= lim

ℎ→0
(2𝑦 + ℎ) = 2𝑦 .

Because 𝑦 is arbitrary, we have 𝑓 ′(𝑥) = 2𝑥 for all 𝑥 ∈ ℝ. Derive the formula of 𝑓 ′(𝑥) for 𝑓 (𝑥) =
𝑘𝑥𝑛 for general 𝑛 is a very good exercise. I do not require you to do the same for the last five
rows because some of you might know little about the Euler’s number 𝑒, exponential functions,
logarithm, and trigonometric functions; for those who know these well, now you have five more
good exercises.8

Next we introduce some more general rules of finding derivatives.

Theorem 4 (Rules of differentiation). Let 𝑓 ∶ [𝑎, 𝑏] → ℝ and 𝑔 ∶ [𝑎, 𝑏] → ℝ be differentiable at
𝑥 ∈ [𝑎, 𝑏]. Then 𝑓 + 𝑔, 𝑓 𝑔, and 𝑓 /𝑔 are differentiable at 𝑥 , and

(1) [𝑓 (𝑥) + 𝑔(𝑥)]′ = 𝑓 ′(𝑥) + 𝑔′(𝑥);

(2) [𝑓 (𝑥)𝑔(𝑥)]′ = 𝑓 ′(𝑥)𝑔(𝑥) + 𝑓 (𝑥)𝑔′(𝑥); and

(3) if 𝑔(𝑥) ≠ 0,

[
𝑓 (𝑥)
𝑔(𝑥)]

′

=
𝑔(𝑥)𝑓 ′(𝑥) − 𝑔′(𝑥)𝑓 (𝑥)

𝑔2(𝑥)
.

Proof (Sketch). (1) is a direct consequence of Proposition 6 (1). For (2), observe that

𝑓 (𝑥 + ℎ)𝑔(𝑥 + ℎ) − 𝑓 (𝑥)𝑔(𝑥) = 𝑓 (𝑥 + ℎ)𝑔(𝑥 + ℎ) − 𝑓 (𝑥 + ℎ)𝑔(𝑥) + 𝑓 (𝑥 + ℎ)𝑔(𝑥) − 𝑓 (𝑥)𝑔(𝑥)

= 𝑓 (𝑥 + ℎ)[𝑔(𝑥 + ℎ) − 𝑔(𝑥)] + [𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)]𝑔(𝑥);

divide this by ℎ and let ℎ → 0, since by (2) we have lim
ℎ→0

𝑓 (𝑥 + ℎ) = 𝑓 (𝑥), (2) follows. To prove (3),
let 𝑧 = 𝑓 /𝑔. Then

𝑧(𝑥 + ℎ) − 𝑧(𝑥)
ℎ

=
1

𝑔(𝑥 + ℎ)𝑔(𝑥) [
𝑔(𝑥)

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

− 𝑓 (𝑥)
𝑔(𝑥 + ℎ) − 𝑔(𝑥)

ℎ ] .

Letting ℎ → 0 yields (3). ■

Theorem 5 (Chain rule). Let 𝑓 ∶ [𝑎, 𝑏] → ℝ be continuous, and differentiable at 𝑥 ∈ (𝑎, 𝑏). Let
𝑔 ∶ 𝐼 → ℝ, where 𝑓 ([𝑎, 𝑏]) ⊆ 𝐼 , be differentiable at 𝑓 (𝑥). Define ℎ ∶ [𝑎, 𝑏] → ℝ by

ℎ(𝑡) = 𝑔(𝑓 (𝑡))
8At least for students major in Economics and Finance, you really need to be comfortable working with logarithm

functions, the Euler’s number 𝑒 and exponential functions. For those who would like to learn, Chapter 5 of Simon
and Blume (1994) is an excellent introduction.
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for all 𝑡 ∈ [𝑎, 𝑏]; then ℎ is differentiable at 𝑥 , and

ℎ′(𝑥) = 𝑔′(𝑓 (𝑥))𝑓 ′(𝑥).

The chain rule is often summarized as “the derivative of the outside times the derivative of
the inside,” but one must remember that the derivative of the outside function is evaluated at the
inside function’s value at 𝑥 . See, for example, Rudin (1976), page 105,Theorem 5.5, for a proof of
Theorem 5.

We state two very famous and useful results below without proof;9 we focus on geometric
intuition instead.

Theorem6 (Rolle). Let 𝑓 ∶ [𝑎, 𝑏] → ℝ be continuous, and differentiable on (𝑎, 𝑏). If 𝑓 (𝑎) = 𝑓 (𝑏) = 0,
then there exists 𝜃 ∈ (𝑎, 𝑏) such that 𝑓 ′(𝜃) = 0.

Figure 5: Illustration to Rolle’s theorem

Figure 5 provides a very neat geometric explanation for Rolle’s theorem. It says that a dif-
ferentiable function that attains equal values at two distinct points must have at least one point,
somewhere strictly between them, where the slope of the tangent line is zero. Rolle’s theorem
can be generalized to the celebrated mean value theorem.

Theorem 7 (Mean value theorem). Let 𝑓 ∶ [𝑎, 𝑏] → ℝ be continuous, and differentiable on (𝑎, 𝑏).
Then there exists 𝜉 ∈ (𝑎, 𝑏) such that

𝑓 (𝑏) − 𝑓 (𝑎) = 𝑓 ′(𝜉 )(𝑏 − 𝑎). (3)

The mean value theorem can be proved using Rolle’s theorem and a carefully constructed
9Interested readers may consult, for example, Ok (2007), page 69. The proof of Rolle’s theorem is a bit intricate

but not difficult; the reason I choose to omit it is that we have not introduced the celebrated first-order (necessary)
condition. Everyone who knows it is encouraged to try.
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auxiliary function. Observe that (3) can be written as

𝑓 ′(𝜉 ) =
𝑓 (𝑏) − 𝑓 (𝑎)

𝑏 − 𝑎
. (4)

Figure 6: Illustration to the mean value theorem

The geometric intuition of the mean value theorem is illustrated in Figure 6. As shown in the
left panel, (4) says that, For any function that is continuous on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏),
there exists some 𝜉 in the interval (𝑎, 𝑏) such that the secant joining the endpoints of the interval
[𝑎, 𝑏] is parallel to the tangent at 𝜉 ; in other words, the function 𝑓 attains the slope of the secant
between 𝑎 and 𝑏 as the derivative at the point 𝜉 . And the right panel shows that 𝜉 need not to be
unique; that is, it is also possible that there are multiple tangents parallel to the secant.

5.2 Differentiable monotone functions

Definition 14 (Monotonicity). Let 𝑇 be a nonempty subset of ℝ. A function 𝑓 ∶ 𝑇 → ℝ is said
to be

• increasing if for any 𝑥 , 𝑦 ∈ 𝑇 , 𝑥 ≥ 𝑦 implies 𝑓 (𝑥) ≥ 𝑓 (𝑦);

• strictly increasing if for any 𝑥 , 𝑦 ∈ 𝑇 , 𝑥 > 𝑦 implies 𝑓 (𝑥) > 𝑓 (𝑦);

• decreasing if for any 𝑥 , 𝑦 ∈ 𝑇 , 𝑥 ≥ 𝑦 implies 𝑓 (𝑥) ≤ 𝑓 (𝑦); and

• strictly decreasing if for any 𝑥 , 𝑦 ∈ 𝑇 , 𝑥 > 𝑦 implies 𝑓 (𝑥) < 𝑓 (𝑦).

We call a function that is either increasing or decreasing monotone. It is not difficult to see
that 𝑓 is (strictly) decreasing if and only if −𝑓 is (strictly) increasing. The next result characterizes
differentiable monotone functions.

Theorem 8. Let 𝐼 be an open interval and 𝑓 (𝑥) ∶ 𝐼 → ℝ be differentiable, then
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𝑂 𝑥

𝑦

𝑓 (𝑥) = 𝑥3

Figure 7: The graph of 𝑓 (𝑥) = 𝑥3.

(1) 𝑓 is increasing if and only if 𝑓 ′ ≥ 0 on 𝐼 ;

(2) if 𝑓 ′ > 0 on 𝐼 , then 𝑓 is strictly increasing;

(3) 𝑓 is decreasing if and only if 𝑓 ′ ≤ 0; and

(4) if 𝑓 ′ < 0 on 𝐼 , then 𝑓 is strictly decreasing.

Proof. Exercise. ■

Example 9. Observe that the converse of (2) and (4) inTheorem 8 need not hold. Let 𝑓 ∶ ℝ → ℝ
be given by 𝑓 (𝑥) = 𝑥3; see Figure 7 for its graph. Then 𝑓 ′(𝑥) = 3𝑥2, so 𝑓 ′(0) = 0, but 𝑓 is a strictly
increasing function: for any 𝑥 , 𝑦 ∈ ℝ with 𝑥 > 𝑦,

𝑓 (𝑥) − 𝑓 (𝑦) = 𝑥3 − 𝑦3 = (𝑥 − 𝑦)(𝑥2 + 𝑥𝑦 + 𝑦2) = (𝑥 − 𝑦)𝑥(𝑥 + 𝑦) + (𝑥 − 𝑦)𝑦2 > 0,

where the inequality follows from the assumption that 𝑥 − 𝑦 > 0, which in turn implies that
𝑥(𝑥 + 𝑦) > 0 no matter the signs of 𝑥 and 𝑦 are.

Lemma 1. Let 𝐼 be an open interval; if 𝑓 ∶ 𝐼 → ℝ is strictly monotone, then it is injective.

Proof. We prove the case that 𝑓 is strictly increasing; the proof for strictly decreasing 𝑓 is com-
pletely analogous. Let 𝑥 , 𝑦 ∈ 𝐼 with 𝑥 ≠ 𝑦, then either 𝑥 < 𝑦 or 𝑥 > 𝑦. If 𝑥 < 𝑦 , then since 𝑓 is
strictly increasing on 𝐼 , we have 𝑓 (𝑥) < 𝑓 (𝑦). Similarly, if 𝑥 > 𝑦, then since 𝑓 is strictly increasing
on 𝐼 , we have 𝑓 (𝑥) > 𝑓 (𝑦). In both cases, 𝑓 (𝑥) ≠ 𝑓 (𝑦); hence 𝑓 is injective on 𝐼 . ■
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Now we are ready to state the celebrated inverse function theorem.

Theorem 9 (Inverse function theorem). Let 𝑓 ∶ (𝑎, 𝑏) → ℝ be strictly monotone and continuous,
and 𝑓 is differentiable at 𝑥0 ∈ (𝑎, 𝑏) with 𝑓 ′(𝑥0) ≠ 0. Then 𝑓 is invertible, and its inverse 𝑔 ∶
𝑓 ((𝑎, 𝑏)) → ℝ is differentiable at 𝑦0 = 𝑓 (𝑥0) and

𝑔′(𝑦0) =
1

𝑓 ′(𝑥0)
=

1
𝑓 ′(𝑔(𝑦0))

.

Proof. Again, we prove the case that 𝑓 is strictly increasing. Because 𝑓 is strictly increasing
and continuous, 𝑓 ((𝑎, 𝑏)) = (𝑓 (𝑎), 𝑓 (𝑏)); in other words, the range of 𝑓 is also an interval. Denote
𝐽 = (𝑓 (𝑎), 𝑓 (𝑏)). Then by Lemma 1, the function 𝑓 ∶ (𝑎, 𝑏) → 𝐽 is injective,10 and since 𝑓 ((𝑎, 𝑏)) = 𝐽 ,
it is also bijective. Thus, 𝑓 is invertible; call its inverse 𝑔.

Since 𝑦0 = 𝑓 (𝑥0), we have 𝑔(𝑦0) = 𝑥0, so

𝑔(𝑦) − 𝑔 (𝑦0)
𝑦 − 𝑦0

=
𝑔(𝑦) − 𝑔 (𝑦0)

𝑓 (𝑔(𝑦)) − 𝑓 (𝑔 (𝑦0))
=

𝑥 − 𝑥0
𝑓 (𝑥) − 𝑓 (𝑥0)

=
1

𝑓 (𝑥)−𝑓 (𝑥0)
𝑥−𝑥0

, (5)

where the first and second equality follows since 𝑔 is the inverse of 𝑓 . Because 𝑓 is differentiable
at 𝑥0,

lim
𝑦→𝑦0

𝑔(𝑦) − 𝑔 (𝑦0)
𝑦 − 𝑦0

= lim
𝑥→𝑥0

1
𝑓 (𝑥)−𝑓 (𝑥0)

𝑥−𝑥0

= 1/𝑓 ′(𝑥0),

where the first equality follows from (5),11 and the second follows from the fact that 𝑓 ′(𝑥0) ≠ 0
and Proposition 6. ■

5.3 Partial derivatives

Definition 15 (Partial derivative). Let 𝑆 be a nonempty subset of ℝ𝑛. If 𝑓 ∶ 𝑆 → ℝ, the partial
derivative of 𝑓 with respect to its 𝑗-th argument, 𝑥𝑗 , at 𝑥0 = (𝑥0

𝑗 , 𝑥0
−𝑗), is

lim
ℎ→0

𝑓 (𝑥0
𝑗 + ℎ, 𝑥0

−𝑗) − 𝑓 (𝑥0)
ℎ

,

provided that the above limit exists.

When the partial derivative of 𝑓 with respect to 𝑥𝑗 exists, it is the derivative of 𝑓 with respect
to 𝑥𝑗 holding all other variables fixed; it is denoted 𝜕𝑓

𝜕𝑥𝑗
, or sometimes 𝑓𝑗 . That said, to calculate

10Formally this function is no longer 𝑓 , since we changed its codomain. The original function is only injective,
and the new one is bijective. To keep our argument simple, we abuse notation and still call it 𝑓 .

11In fact, to show that 𝑦 → 𝑦0 implies 𝑥 → 𝑥0, we need to prove that 𝑔 is a continuous function. It is not too
difficult to prove but we skip it here; interested readers might try to prove the following statement: if a real-valued
function defined on an interval 𝐼 is continuous and injective, then its inverse is also continuous.
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partial derivatives, we just need to take all other variables as constants, and apply the rules we
introduced in Section 5.1 to 𝑥𝑗 .

For functions of many variables, the definition of “differentiability” is beyond the scope of
this class.12 When we say a function of many variables is differentiable, it implies that all partial
derivatives exist.

Example 10. Let 𝑓 ∶ ℝ2 → ℝ be defined as

𝑓 (𝑥 , 𝑦) = 𝑥2 + 𝑥𝑦 + 𝑦 + 1,

then
𝜕𝑓
𝜕𝑥

= 2𝑥 + 𝑦, and
𝜕𝑓
𝜕𝑦

= 𝑥 + 1.

Let 𝑔 ∶ ℝ2
++ → ℝ be defined as

𝑔(𝑥 , 𝑦) = 𝑒𝑥𝑦 + 𝑦 log 𝑥 + 3,

then
𝜕𝑔
𝜕𝑥

= 𝑦𝑒𝑥𝑦 +
𝑦
𝑥
, and

𝜕𝑔
𝜕𝑦

= 𝑥𝑒𝑥𝑦 + log 𝑥 .

For a differentiable function 𝑓 ∶ 𝑆 → ℝ and 𝑥0 ∈ 𝑆, we use 𝐷𝑓 (𝑥0) or ∇𝑓 (𝑥0) to denote the
vector of all partial derivatives at 𝑥0; that is,

(
𝜕𝑓
𝜕𝑥1

(𝑥0),
𝜕𝑓
𝜕𝑥2

(𝑥0), … ,
𝜕𝑓
𝜕𝑥𝑛

(𝑥0)) .

We call this vector the gradient of 𝑓 at 𝑥0.
Having defined partial derivatives, we are ready to generalize the chain rule beyond Theo-

rem 5.

Theorem 10 (The chain rule generalized).

(1) Suppose that for each 𝑗 = 1, 2, … , 𝑛, 𝑔𝑗 ∶ ℝ → ℝ is differentiable, and 𝑓 is a diffentiable
function of 𝑛-variables. Then the function 𝐹 ∶ ℝ → ℝ given by

𝐹 (𝑥) = 𝑓 (𝑔1(𝑥), … , 𝑔𝑛(𝑥))

is differentiable, and

𝐹 ′(𝑥) = 𝑓1(𝑔1(𝑥), … , 𝑔𝑛(𝑥))𝑔′1(𝑥) + … + 𝑓𝑛(𝑔1(𝑥), … , 𝑔𝑛(𝑥))𝑔′𝑛(𝑥),
12For a formal definition, see Section 1.6 of Osborne (2016).
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where 𝑓𝑗 is the partial derivative of 𝑓 with respect to its 𝑗-th argument.

(2) Suppose that for each 𝑗 = 1, 2, … , 𝑛, ℎ𝑗 ∶ ℝ𝑚 → ℝ is differentiable, and 𝑓 is a diffentiable
function of 𝑛-variables. Then the function 𝐺 ∶ ℝ𝑚 → ℝ given by

𝐺(𝑥1, … , 𝑥𝑚) = 𝑓 (ℎ1(𝑥1, … , 𝑥𝑚), … , ℎ𝑛(𝑥1, … , 𝑥𝑚))

is differentiable, and for each 𝑘 = 1,… ,𝑚,

𝜕𝐺
𝜕𝑥𝑘

(𝑥1, … , 𝑥𝑚) = 𝑓1(ℎ1(𝑥1, … , 𝑥𝑚), … , ℎ𝑛(𝑥1, … , 𝑥𝑚))
𝜕ℎ1
𝜕𝑥𝑘

(𝑥1, … , 𝑥𝑚)

+ … + 𝑓𝑛(ℎ1(𝑥1, … , 𝑥𝑚), … , ℎ𝑛(𝑥1, … , 𝑥𝑚))
𝜕ℎ𝑛
𝜕𝑥𝑘

(𝑥1, … , 𝑥𝑚)

=
𝑛
∑
𝑗=1

𝑓𝑗(ℎ1(𝑥1, … , 𝑥𝑚), … , ℎ𝑛(𝑥1, … , 𝑥𝑚))
𝜕ℎ𝑗
𝜕𝑥𝑘

;

The first assertion is a direct analog of the chain rule formula inTheorem 5; loosely speaking,
we take derivatives with respect to each of the 𝑔𝑖’s and then use the linearity of differentiation.
Some knowledge required in proving (2) is beyond the scope of this course; interested readers are
directed to Rudin (1976), Theorem 9.15, page 214.

6 Convexity and concavity

Definition 16 (Convex sets). A subset 𝑇 ofℝ𝑛 is said to be convex if the line segment connecting
any two elements of 𝑇 lies entirely within 𝑇 ; that is,

𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝑇

for all 𝑥 , 𝑦 ∈ 𝑇 and 𝜆 ∈ [0, 1].

See Figure 8 for an illustration. On the real line, convex sets coincide with intervals. Convex
sets play a central role in modern economics because of many nice properties, many of which
you will discover in your first year courses.

6.1 Convex and concave functions

Definition 17 (Convex and concave functions). Let 𝑇 be a nonempty convex subset of ℝ𝑛.

• A function 𝑓 ∶ 𝑇 → ℝ is called convex if

𝑓 (𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝑓 (𝑥) + (1 − 𝜆)𝑓 (𝑦) for any 𝑥 , 𝑦 ∈ 𝑇 and 0 ≤ 𝜆 ≤ 1,
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Figure 8: Convex (left) and non-convex (right) sets

and strictly convex if the above inequality holds strictly for any distinct 𝑥 , 𝑦 ∈ 𝑇 and
0 < 𝜆 < 1.

• A function 𝑓 ∶ 𝑇 → ℝ is called concave if

𝑓 (𝜆𝑥 + (1 − 𝜆)𝑦) ≥ 𝜆𝑓 (𝑥) + (1 − 𝜆)𝑓 (𝑦) for any 𝑥 , 𝑦 ∈ 𝑇 and 0 ≤ 𝜆 ≤ 1,

and strictly concave if the above inequality holds strictly for any distinct 𝑥 , 𝑦 ∈ 𝑇 and
0 < 𝜆 < 1.

• A function 𝑓 ∶ 𝑇 → ℝ is called affine if it is both convex and concave; equivalently, 𝑓 is
affine if

𝑓 (𝜆𝑥 + (1 − 𝜆)𝑦) = 𝜆𝑓 (𝑥) + (1 − 𝜆)𝑓 (𝑦) for any 𝑥 , 𝑦 ∈ 𝑇 and 0 ≤ 𝜆 ≤ 1.

Figure 9: (Strictly) convex and concave functions of a single variable
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Example 11. 𝑓 ∶ ℝ → ℝ defined by 𝑓 (𝑥) = 𝑥2 is a strictly convex function, and 𝑔 ∶ ℝ → ℝ
defined by 𝑔(𝑥) =

√
𝑥 is a strictly convex function.

Example 12. Let 𝑓 ∶ ℝ → ℝ be defined by

𝑓 (𝑥) = 2𝑥 + 1.

Then for all 𝜆 ∈ [0, 1] and all 𝑥 ′, 𝑥 ′′ ∈ ℝ,

𝑓 (𝜆𝑥 ′ + (1 − 𝜆)𝑥 ′′) = 2[𝜆𝑥 ′ + (1 − 𝜆)𝑥 ′′] + 1 = 𝜆(2𝑥 ′ + 1) + (1 − 𝜆)(2𝑥 ′′ + 1) = 𝜆𝑓 (𝑥 ′) + (1 − 𝜆)𝑓 (𝑥 ′′),

so 𝑓 is both convex and concave, and hence affine. Is 𝑔 ∶ {0, 1} → {1, 3} defined by 𝑔(𝑥) = 2𝑥 + 1
convex? Concave? Why?

The following useful results are direct consequence of the above definitions.

Observation 8. A function 𝑓 is (strictly) convex if and only if −𝑓 is (strictly) concave.

Observation 9. If 𝑓 and 𝑔 are (strictly) convex functions, and 𝛼 , 𝛽 ≥ 0, then 𝛼𝑓 + 𝛽𝑔 is a (strictly)
convex function; if 𝑓 and 𝑔 are (strictly) concave functions, and 𝛼 , 𝛽 ≥ 0, then 𝛼𝑓 + 𝛽𝑔 is a (strictly)
concave function.

The next result shows that a increasing convex/concave transformation of a concave function
is convex/concave. It is not difficult to prove: just apply the definition twice and use the fact that
𝑓 is increasing to “pass” the inequality.

Proposition 8. If 𝑓 ∶ ℝ → ℝ is an increasing convex (concave) function and 𝑔 ∶ ℝ𝑛 → ℝ is a
convex (concave) function, 𝑓 ◦𝑔 is also convex (concave).

Proof. Exercise. ■

Observe that, if we drop the requirement that 𝑓 is convex (concave), then Proposition 8 may
fail. To see this, let 𝑔(𝑥) = 𝑥 and 𝑓 (𝑥) = 𝑥2. It is easy to see that 𝑔 is a concave function, and 𝑓 is
increasing. Let ℎ = 𝑓 ◦𝑔, we see that ℎ(𝑥) = 𝑥2 is a strictly convex function, hence not concave.

The remaining discussion on convex and concave functions are confined to differentiable func-
tions that are defined on intervals. See Appendix A for a result on convexity and concavity of
functions of two variables. For more general results, Chapter 3 of Osborne (2016) is an excellent
reference.

Theorem 11. Let 𝑓 ∶ (𝑎, 𝑏) → ℝ be differentiable. Then

• 𝑓 is (strictly) convex if and only if 𝑓 ′ is (strictly) increasing;
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• 𝑓 is (strictly) concave if and only if 𝑓 ′ is (strictly) decreasing.

A nice proof of Theorem 11 can be found at Rockafellar (1970), page 26, Theorem 4.4. Com-
bining Theorem 11 andTheorem 8, we arrive at the following corollary.

Corollary 2. Let 𝑓 ∶ (𝑎, 𝑏) → ℝ be twice differentiable. Then

• 𝑓 is convex if and only if 𝑓 ′′ ≥ 0, and if 𝑓 ′′ > 0, 𝑓 is strictly convex;

• 𝑓 is concave if and only if 𝑓 ′′ ≤ 0, and if 𝑓 ′′ < 0, 𝑓 is strictly concave.

Example 11 Revisited. Note that both 𝑓 and 𝑔 are twice differentiable, with 𝑓 ′′(𝑥) = 2 > 0 and

𝑔′′(𝑥) = −
1

4𝑥 3
2
< 0,

hence 𝑓 is strictly convex and 𝑔 is strictly concave.

We conclude our analysis by showing that the graph of a differentiable concave (convex)
function lies on or below (on or above) every tangent to the function. We illustrate it in Figure 10.

Proposition 9. Let 𝑓 ∶ (𝑎, 𝑏) → ℝ be differentiable, then

• 𝑓 is convex if and only if

𝑓 (𝑥) − 𝑓 (𝑦) ≥ 𝑓 ′(𝑦)(𝑥 − 𝑦) for all 𝑥 , 𝑦 ∈ (𝑎, 𝑏),

and strictly convex if and only if the above inequality is strict;

• 𝑓 is concave if and only if

𝑓 (𝑥) − 𝑓 (𝑦) ≤ 𝑓 ′(𝑦)(𝑥 − 𝑦) for all 𝑥 , 𝑦 ∈ (𝑎, 𝑏),

and strictly concave if and only if the above inequality is strict.

Proof. We only prove the first bullet point; the proof for the second is completely analogous.
Suppose 𝑓 is convex first. Then for all 𝑥 , 𝑦 ∈ (𝑎, 𝑏) and all 𝜆 ∈ [0, 1], we have

𝜆𝑓 (𝑥) + (1 − 𝜆)𝑓 (𝑦) ≥ 𝑓 (𝜆𝑥 + (1 − 𝜆)𝑦),

straightforward algebra yields

𝜆𝑓 (𝑥) + (1 − 𝜆)𝑓 (𝑦) ≥ 𝑓 (𝑦 + 𝜆(𝑥 − 𝑦)).
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Figure 10: Illustration of Proposition 9 for (strictly) concave functions; draw a picture for convex
functions!

Divide both sides by 𝜆, we obtain

𝑓 (𝑥) +
𝑓 (𝑦)
𝜆

− 𝑓 (𝑦) ≥
𝑓 (𝑦 + 𝜆(𝑥 − 𝑦))

𝜆
;

rearrange, we get

𝑓 (𝑥) − 𝑓 (𝑦) ≥
𝑓 (𝑦 + 𝜆(𝑥 − 𝑦)) − 𝑓 (𝑦)

𝜆(𝑥 − 𝑦)
(𝑥 − 𝑦).

Letting 𝜆 → 0 yields the desired inequality.
Now suppose

𝑓 (𝑢) − 𝑓 (𝑣) ≥ 𝑓 ′(𝑣)(𝑢 − 𝑣) for all 𝑢, 𝑣 ∈ (𝑎, 𝑏). (6)

Take any 𝑥 , 𝑦 ∈ (𝑎, 𝑏) with 𝑥 ≠ 𝑦, and any 𝜆 ∈ [0, 1]. Let 𝑧 = 𝜆𝑥 + (1 − 𝜆)𝑦; applying Equation (6)
on 𝑥 , 𝑧 and 𝑦 , 𝑧 respectively, we get

𝑓 (𝑥) − 𝑓 (𝑧) ≥ 𝑓 ′(𝑧)(𝑥 − 𝑧), 𝑓 (𝑦) − 𝑓 (𝑧) ≥ 𝑓 ′(𝑧)(𝑦 − 𝑧).

Multiplying the inequality on the left by 𝜆, and on the right by 1 − 𝜆, and adding them up yields

𝜆𝑓 (𝑥) + (1 − 𝜆)𝑓 (𝑦) ≥ 𝑓 (𝑧);

hence 𝑓 is convex.
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Following basically the same proof as above and replacing inequalities by strict inequalities,
the statement for strictly convex functions can be established. ■

6.2 Quasiconvex and quasiconcave functions

As discussed above, convex and concave functions have many appealing properties; but some-
times some weaker assumptions are sufficient for our purpose. In economics, the most used
weakening of convexity (concavity) is called quasiconvexity (quasiconcavity).

Definition 18 (Quasiconvex and quasiconcave functions). Let 𝑇 be a nonempty convex subset of
ℝ𝑛.

• A function 𝑓 ∶ 𝑇 → ℝ is called quasiconvex if

𝑓 (𝜆𝑥 + (1 − 𝜆)𝑦) ≤ max{𝑓 (𝑥), 𝑓 (𝑦)} for any 𝑥 , 𝑦 ∈ 𝑇 and 0 ≤ 𝜆 ≤ 1,

and strictly quasiconvex if the above inequality holds strictly for any distinct 𝑥 , 𝑦 ∈ 𝑇
and 0 < 𝜆 < 1.

• A function 𝑓 ∶ 𝑇 → ℝ is called quasiconcave if

𝑓 (𝜆𝑥 + (1 − 𝜆)𝑦) ≥ min{𝑓 (𝑥), 𝑓 (𝑦)} for any 𝑥 , 𝑦 ∈ 𝑇 and 0 ≤ 𝜆 ≤ 1,

and strictly quasiconcave if the above inequality holds strictly for any distinct 𝑥 , 𝑦 ∈ 𝑇
and 0 < 𝜆 < 1.

The “symmetry” of convex and concave functions stated in Observation 8 holds for quasicon-
vex and quasiconcave functions.

Observation 10. A function 𝑓 is (strictly) quasiconvex if and only if −𝑓 is (strictly) quasiconcave.

By definition, it is not difficult to show that quasiconvexity (quasiconcavity) is indeed a weak-
ening of convexity (concavity).

Observation 11. If a function 𝑓 is (strictly) convex, it is (strictly) quasiconvex; if a function 𝑓 is
(strictly) concave, it is (strictly) quasiconcave.

Observe that the converse of Observation 11 is not true. For instance, the function 𝑓 ∶ ℝ+ →
ℝ+ defined by 𝑓 (𝑥) = 𝑥2 is quasiconcave: take any 𝑥 ′, 𝑥 ′′ ∈ ℝ+; without loss of generality, assume
𝑥 ′ ≤ 𝑥 ′′, then we have

𝜆𝑥 ′ + (1 − 𝜆)𝑥 ′′ ≥ 𝑥 ′′;
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and since 𝑓 is increasing on ℝ+, we have

𝑓 (𝜆𝑥 ′ + (1 − 𝜆)𝑥 ′′) ≥ 𝑓 (𝑥 ′′) = min{𝑓 (𝑥 ′), 𝑓 (𝑥 ′′)}.

However, 𝑓 is not concave; in fact, it is convex. Then Observation 11 implies that 𝑓 is also quasi-
convex; so a function could be both quasiconvex and quasiconcave.

And for quasiconvex and quasiconcave functions, we have a “stronger” result than Proposi-
tion 8 for convex and concave functions.

Proposition 10. If 𝑓 ∶ ℝ → ℝ is an increasing function and 𝑔 ∶ ℝ𝑛 → ℝ is a quasiconvex
(quasiconcave) function, 𝑓 ◦𝑔 is also quasiconvex (quasiconcave).

Proof. Suppose 𝑔 is quasiconcave,13 so for any 𝑥 , 𝑦 ∈ ℝ𝑛 and 𝜆 ∈ [0, 1],

𝑔(𝜆𝑥 + (1 − 𝜆)𝑦) ≥ min{𝑔(𝑥), 𝑔(𝑦)}.

Then because 𝑓 is increasing,

𝑓 (𝑔(𝜆𝑥 + (1 − 𝜆)𝑦)) ≥ 𝑓 (min{𝑔(𝑥), 𝑔(𝑦)}) = min{𝑓 (𝑔(𝑥)), 𝑓 (𝑔(𝑦))}.

Draw a picture to make sure that you understand why does the equality above hold. ■

Definition 19. Let 𝑇 ⊆ ℝ𝑛 and let 𝑓 ∶ 𝑇 → ℝ be a function. For any 𝑦 ∈ ℝ, the set

𝑈 𝑓 (𝑦) = {𝑥 ∈ 𝑇 ∶ 𝑓 (𝑥) ≥ 𝑦} = 𝑓 −1([𝑦,∞))

is called the upper level set (or superlevel set) of 𝑓 for 𝑦; and the set

𝐿𝑓 (𝑦) = {𝑥 ∈ 𝑇 ∶ 𝑓 (𝑥) ≤ 𝑦} = 𝑓 −1((−∞, 𝑦])

is called the lower level set (or sublevel set) of 𝑓 for 𝑦.

Lemma 2. Let 𝑓 ∶ 𝐶 → ℝ where 𝐶 is a convex subset of ℝ𝑛. Then

(1) 𝑓 is quasiconcave if and only if 𝑈 𝑓 (𝑦) is convex for all 𝑦 ∈ ℝ;

(2) 𝑓 is quasiconvex if and only if 𝐿𝑓 (𝑦) is convex for all 𝑦 ∈ ℝ.

Proof. We only prove Part (1); Part (2) is completely analogous. Suppose 𝑓 is quasiconcave, and
fix any 𝑦 ∈ ℝ. To show that 𝑈 𝑓 (𝑦) is convex, take 𝑥 ′, 𝑥 ′′ ∈ 𝑈 𝑓 (𝑦). By definition of 𝑈 𝑓 (𝑦), 𝑓 (𝑥 ′) ≥ 𝑦

13The proof for quasiconvex 𝑔 is completely analogous.
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and 𝑓 (𝑥 ′′) ≥ 𝑦. But then

𝑓 (𝜆𝑥 ′ + (1 − 𝜆)𝑥 ′′) ≥ min{𝑓 (𝑥 ′), 𝑓 (𝑥 ′′)} ≥ 𝑦;

this implies that 𝜆𝑥 ′ + (1 − 𝜆)𝑥 ′′ ∈ 𝑈 𝑓 (𝑦), and hence 𝑈 𝑓 (𝑦) is convex.
Now suppose 𝑈 𝑓 (𝑦) is convex for all 𝑦. Take 𝑥 ′, 𝑥 ′′ ∈ 𝐶 and any 𝜆 ∈ [0, 1], and let 𝑦 =

min {𝑓 (𝑥 ′) , 𝑓 (𝑥 ′′)}. By construction, 𝑥 ′, 𝑥 ′′ ∈ 𝑈 𝑓 (𝑦). Then because 𝑈 𝑓 (𝑦) is convex, 𝜆𝑥 ′ + (1 −
𝜆)𝑥 ′′ ∈ 𝑈 𝑓 (𝑦). Consequently, 𝑓 (𝜆𝑥 ′ + (1 − 𝜆)𝑥 ′′) ≥ 𝑦 = min {𝑓 (𝑥 ′) , 𝑓 (𝑥 ′′)}, which implies that 𝑓
is quasiconcave by definition. ■

With the help of Lemma 2, we are ready to establish the following characterization of quasi-
convex and quasiconcave functions defined on subsets of the real line.

Theorem 12. Let 𝑎, 𝑏 ∈ ℝ with 𝑎 < 𝑏, and let 𝑓 ∶ [𝑎, 𝑏] → ℝ be a function.

(1) 𝑓 is quasiconcave if and only if there exists 𝑥 ∗ ∈ [𝑎, 𝑏] such that 𝑓 is increasing on [𝑎, 𝑥 ∗] and
decreasing on [𝑥 ∗, 𝑏].

(2) 𝑓 is quasiconvex if and only if there exists 𝑥 ∗ ∈ [𝑎, 𝑏] such that 𝑓 is decreasing on [𝑎, 𝑥 ∗] and
increasing on [𝑥 ∗, 𝑏].

Proof. Again, we only prove Part (1); Part (2) is completely analogous. We proceed by contra-
position. If 𝑓 does not satisfy any of the conditions, then we can find 𝑥1, 𝑥2, 𝑥3 ∈ [𝑎, 𝑏] such that
𝑥1 < 𝑥2 < 𝑥3 and

𝑓 (𝑥2) < min{𝑓 (𝑥1), 𝑓 (𝑥3)}.

Define
𝜆 =

𝑥3 − 𝑥2
𝑥3 − 𝑥1

,

then 𝜆 ∈ (0, 1), and 𝑥2 = 𝜆𝑥1 + (1 − 𝜆)𝑥3. Let 𝑦 = min{𝑓 (𝑥1), 𝑓 (𝑥3)}, then the upper level set 𝑈 𝑓 (𝑦)
contains 𝑥1 and 𝑥3, but not 𝑥2, and hence is not convex. By Lemma 2, 𝑓 is not quasiconcave. ■

We sometimes call a function satisfying the condition described in (1) “single-peaked”, and
“single-dipped” if it satisfies the condition described in (2). Taking 𝑥 ∗ ∈ {𝑎, 𝑏}, we immediately
get Corollary 3.

Corollary 3. Let 𝑓 ∶ [𝑎, 𝑏] → ℝ be a function. If 𝑓 is (strictly) monotone, it is both (strictly)
quasiconvex and quasiconcave.

Example 13. 𝑓 ∶ ℝ+ → ℝ+ defined by 𝑓 (𝑥) = 𝑥2 is both quasiconvex and quasiconcave.
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7 Further reading

For those who know some analysis (for example, those who have taken at least one semester of
calculus and one semester of advanced calculus or undergraduate real analysis), Chapter A of Ok
(2007) is an excellent warm-up read. Section A.1 could be a bit too abstract, so you might want to
focus on the other three sections. It is not necessarily an easy read but it would be very helpful
if you read carefully.

Appendix

A Concave and convex function of two variables

To determine whether a twice-differentiable function of many variables is concave or convex is
much more difficult than a function defined on the real line: we need to examine all its second
partial derivatives. In this short section we focus on the case that 𝑓 is defined on a subset of ℝ2,
since we rarely need to check concavity or convexity of a function of more variables.

Definition 20. Let 𝑆 ⊆ ℝ2 and let 𝑓 ∶ 𝑆 → ℝ be a twice-differentiable function. The Hessian of
𝑓 at 𝑠 ∈ 𝑆 is

𝐻 (𝑠) =
(

𝑓11(𝑠) 𝑓12(𝑠)
𝑓21(𝑠) 𝑓22(𝑠) )

,

where
𝑓11 =

𝜕2𝑓
𝜕𝑥2

1
, 𝑓12 =

𝜕2𝑓
𝜕𝑥1𝜕𝑥2

, 𝑓21 =
𝜕2𝑓

𝜕𝑥2𝜕𝑥1
, and 𝑓22 =

𝜕2𝑓
𝜕𝑥2

2
.

The determinant of a 2 × 2-matrix

𝐴 =
(

𝑎 𝑏
𝑐 𝑑 )

,

denoted |𝐴|, is defined as
|𝐴| = 𝑎𝑑 − 𝑏𝑐.

Then the determinant of the Hessian at 𝑠 ∈ 𝑆 is

|𝐻 (𝑠)| = 𝑓11(𝑠)𝑓22(𝑠) − 𝑓12(𝑠)𝑓21(𝑠).

Theorem 13. Let 𝑆 ⊆ ℝ2 be convex and open, and let 𝑓 ∶ 𝑆 → ℝ be twice-differentiable. Then
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a) 𝑓 is convex if and only if

𝑓11(𝑠) ≥ 0, 𝑓22(𝑠) ≥ 0, and |𝐻 (𝑠)| ≥ 0

for all 𝑠 ∈ 𝑆;

b) if
𝑓11(𝑠) > 0 and |𝐻 (𝑠)| > 0

for all 𝑠 ∈ 𝑆 then 𝑓 is strictly convex;

a) 𝑓 is concave if and only if

𝑓11(𝑠) ≤ 0, 𝑓22(𝑠) ≤ 0, and |𝐻 (𝑠)| ≥ 0

for all 𝑠 ∈ 𝑆; and

d) if
𝑓11(𝑠) < 0 and |𝐻 (𝑠)| > 0

for all 𝑠 ∈ 𝑆 then 𝑓 is strictly concave.

Note thatTheorem 13 does not claim that if 𝑓 is strictly concave then 𝐻 (𝑠) is negative definite
for all 𝑠 ∈ 𝑆; it is indeed false.

Example 14. Let 𝑓 ∶ ℝ2 → ℝ be defined by

𝑓 (𝑥 , 𝑦) = 2𝑥 − 𝑦 − 𝑥2 + 2𝑥𝑦 − 𝑦2.

Then we have

𝐻 (𝑥 , 𝑦) =
(

−2 2
2 −2 )

for all (𝑥 , 𝑦) ∈ ℝ2. 𝐻 (𝑥 , 𝑦) is negative semidefinite, so 𝑓 is concave. (Note that 𝐻 (𝑥 , 𝑦) is not
negative definite, so 𝑓 may or may not be strictly concave.)

In Example 14, the Hessian does not depend on (𝑥 , 𝑦); in general it does.
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