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These notes cover some mathematical prerequisites of this class. In the first three sections,
I provide a quick review of what you should have learned in your calculus class. In Section 4 I
briefly introduce some simple optimization techniques which are used intensively in the remain-
der of this class. I sacrifice some rigorousness for the sake of accessibility as well as expositional
convenience.

1 Functions

When we talk about a function, we mean a rule that “transforms” the objects in a given set to
those of another. A function from 𝑋 to 𝑌 is a rule that assigns each object in 𝑋 one and only one
object in 𝑌 . In this case we write 𝑓 ∶ 𝑋 → 𝑌 ; call 𝑋 the domain of 𝑓 and 𝑌 is the codomain.
Check Figure 1 to make sure that you understand the definition of a function.

1.1 Invertible Functions and Inverse

Given a function 𝑦 = 𝑓 (𝑥), can we always express 𝑥 as a function of 𝑦, say ℎ(𝑦)? Not necessarily.
If this is possible for a function 𝑓 , we say that 𝑓 is invertible; and ℎ is the inverse of 𝑓 . For a
function 𝑓 to be invertible, it has to be that for distinct objects in the domain, 𝑓 assigns different
objects in the codomain. To be more formal, 𝑥 ≠ 𝑥 ′ implies that 𝑓 (𝑥) ≠ 𝑓 (𝑥 ′). As a first example,
the functions shown in the upper left and the upper right panels of Figure 1 are not invertible.

More examples are provided in Figure 2. 𝑔(𝑥) = 𝑥2/2 is not invertible because 𝑔(−2) = 𝑔(2) = 2:
if the inverse of 𝑔 exists, “input” 2 corresponds to two “outputs”, namely 2 and −2, which is not
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A function A function

Not a function Not a function

Figure 1: An illustration of the property of a function
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𝑂 𝑥

𝑦

𝑔(𝑥) = 𝑥2/2

𝑔(𝑥) = 𝑥2/2 is not invertible

𝑂 𝑥

𝑦

𝑓 (𝑥) = 𝑥 + 1

𝑓 (𝑥) = 𝑥 + 1 is invertible

Figure 2: Further examples on functions that are invertible or not invertible.

compatible with the definition of a function. 𝑓 (𝑥) = 𝑥 + 1 is invertible: if 𝑦 = 𝑥 + 1, then 𝑥 = 𝑦 − 1;
and hence ℎ(𝑦) = 𝑦 − 1 is the inverse of 𝑓 .

Now consider 𝑗(𝑥) = 𝑥2/2, but with 𝑥 > 0. Interestingly, 𝑗(𝑥) is invertible: for 𝑥 , 𝑥 ′ > 0, if
𝑥 ≠ 𝑥 ′, then 𝑥2/2 ≠ (𝑥 ′)2/2. Letting 𝑦 = 𝑥2/2 for 𝑥 > 0, we can find 𝑥 =

√
2𝑦. Thus, the inverse of

𝑗(𝑥) is 𝑘(𝑦) =
√
2𝑦.

1.2 Exponentiation and Logarithm

The functions in which the variable 𝑥 appears as an exponent are called exponential functions.
We are only interested in a particular exponential function, 𝑓 (𝑥) = 𝑒𝑥 , where 𝑒 is a constant
approximately equal to 2.71828, known as Euler’s number. We abuse notation and call 𝑓 (𝑥) = 𝑒𝑥

the exponential function. It satisfies the following identities:

(1) 𝑒𝑥+𝑦 = 𝑒𝑥𝑒𝑦 ,

(2) (𝑒𝑥 )𝑦 = 𝑒𝑥𝑦 ,

(3) 𝑒−𝑥 = 1/𝑒𝑥 ,

(4) 𝑒0 = 1.

The inverse of the exponential function is called a logarithm function, denoted by 𝑙(𝑥) =
log 𝑥 .1 The logarithm function has the following properties:

(1) log(𝑥𝑦) = log 𝑥 + log 𝑦,

(2) log(𝑥/𝑦) = log 𝑥 − log 𝑦 ,
1For those who know more about logarithm functions, some author write this function as log𝑒 𝑥 or ln 𝑥 .
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𝑂 𝑥

𝑦

𝑓 (𝑥) = 𝑒𝑥

𝑂 𝑥

𝑦

𝑙(𝑥) = log 𝑥

Figure 3: Graphs of the exponential function (left panel) and the logarithm function (right panel).

(3) log(𝑥𝑦) = 𝑦 log 𝑥 ,

(4) log 1 = 0.

The exponential function and logarithm function are plotted in Figure 3. Note that since
𝑓 (𝑥) = 𝑒𝑥 > 0 for all 𝑥 , log 𝑥 , which is the inverse of 𝑓 (𝑥), is only defined for 𝑥 > 0.

2 Univariate Functions

2.1 From Slopes to Derivatives

We know from high school or pre-calculus that

slope =
rise
run

.

More formally, for a univariate function 𝑓 , and two points 𝑥0 and 𝑥1, the slope between 𝑥0 and 𝑥1
is given by

𝑓 (𝑥1) − 𝑓 (𝑥0)
𝑥1 − 𝑥0

.

The slope between 𝑥0 and 𝑥1 measures the “rate of change” between these two points.
Say that 𝑓 is differentiable at 𝑥0 if

lim
ℎ→0

𝑓 (𝑥0 + Δ𝑥) − 𝑓 (𝑥0)
Δ𝑥

exists. The derivative of 𝑓 at 𝑥0, denoted 𝑓 ′(𝑥0), or d𝑓
d𝑥 (𝑥0), is this limit. We see that the derivative

of 𝑓 at 𝑥0 is the limit of the slope between 𝑥0 and 𝑥1, or the rate of change, as 𝑥1 = 𝑥0 + Δ𝑥
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approaches 𝑥0;2 this is illustrated in Figure 4. And geometrically, the derivative of 𝑓 at 𝑥0 is the
slope of the line that tangent to the graph of 𝑓 at 𝑥0.

The function 𝑓 is said to be differentiable if it is differentiable at all points. In this case the
derivative of 𝑓 is defined as the function 𝑓 ′(𝑥) that assigns each 𝑥 the derivative of 𝑓 at 𝑥 .

In this class, if you do not know how to determine whether a function is differentiable for-
mally, it is not that big a deal. Nonetheless, you should at least know that if a function has a jump
or a kink, then it is not differentiable at the jump or the kink; see Figure 5 for two examples.

2.2 Rules of Taking Derivatives

For some complicated functions, computing derivatives using definition could be a tricky and
daunting task. The following few results provide some “shortcuts” for it. Using the definition, we
can calculate the following formulas for the derivative of specific functions, where 𝑎, 𝑛, and 𝑘 are
constants.

𝑓 (𝑥) 𝑓 ′(𝑥)
𝑘 0
𝑘𝑥𝑛 𝑘𝑛𝑥𝑛−1

log 𝑥 1/𝑥
𝑒𝑥 𝑒𝑥

𝑎𝑥 𝑎𝑥 log 𝑎
cos 𝑥 − sin 𝑥
sin 𝑥 cos 𝑥

We do not attempt to prove all of the derivatives in the table above; instead, we find the
derivative of 𝑓 = 𝑥3 as an example to fix ideas. By definition, for any 𝑥 , we have

lim
Δ𝑥→0

(𝑥 + Δ𝑥)3 − 𝑥3

Δ𝑥
= lim

Δ𝑥→0

𝑥3 + 3𝑥2(Δ𝑥) + 3𝑥(Δ𝑥)2 − 𝑥3

Δ𝑥
= lim

Δ𝑥→0

3𝑦2(Δ𝑥) + 3𝑦(Δ𝑥)2

Δ𝑥
= lim

Δ𝑥→0
(3𝑥2 + 3𝑥(Δ𝑥)) = 3𝑥2,

where the first equality holds because

(𝑥 + Δ𝑥)3 = (𝑥 + Δ𝑥)(𝑥 + Δ𝑥)2 = (𝑥 + Δ𝑥)(𝑥2 + 2𝑥(Δ𝑥) + (Δ𝑥)2) = 𝑥3 + 3𝑥2(Δ𝑥) + 3𝑦(Δ𝑥)2 − 𝑥3.

Because 𝑥 is arbitrary, we have 𝑓 ′(𝑥) = 3𝑥2 for all 𝑥 .
Next we introduce some more general rules of finding derivatives.

Result 1. Let 𝑓 and 𝑔 be differentiable univariate functions. Then

2Loosely, we can say that it is the rate of change at 𝑥0.
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Figure 4: The derivative of a function at a point 𝑥 is the limit (as Δ𝑥 approaches 0) of secants to
curve 𝑦 = 𝑓 (𝑥) determined by points (𝑥 , 𝑓 (𝑥)) and (𝑥 + Δ𝑥 , 𝑓 (𝑥 + Δ𝑥)); equivalently, it is the slope
of the tangent line at (𝑥 , 𝑓 (𝑥)).
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𝑂 𝑥

𝑦

𝑓 (𝑥) = |𝑥 |

𝑂 𝑥

𝑦

𝑔(𝑥) =

{
𝑥 if 𝑥 ≤ 2
𝑥 − 2 if 𝑥 > 2

Figure 5: Examples of non-differentiable functions. 𝑓 (𝑥) displayed in the left panel is not differ-
entiable at 𝑥 = 0 because it has a kink there; 𝑔(𝑥) plotted in the right panel is not differentiable
at 𝑥 = 2 because there is a jump.

(1) [𝑓 (𝑥) + 𝑔(𝑥)]′ = 𝑓 ′(𝑥) + 𝑔′(𝑥);

(2) [𝑓 (𝑥)𝑔(𝑥)]′ = 𝑓 ′(𝑥)𝑔(𝑥) + 𝑓 (𝑥)𝑔′(𝑥); and

(3) if 𝑔(𝑥) ≠ 0,

[
𝑓 (𝑥)
𝑔(𝑥)]

′

=
𝑔(𝑥)𝑓 ′(𝑥) − 𝑔′(𝑥)𝑓 (𝑥)

𝑔2(𝑥)
.

Example 1. Consider 𝑓 (𝑥) = 𝑥2(log 𝑥 + 1). Its derivative is given by

𝑓 ′(𝑥) = 2𝑥(log 𝑥 + 1) + 𝑥2(1/𝑥) = 2𝑥 log 𝑥 + 3𝑥 .

Consider 𝑔(𝑥) = 1/𝑥 . It derivative is given by

𝑔′(𝑥) =
0 ⋅ 𝑥 − 1 ⋅ 1

𝑥2 = −
1
𝑥2 .

Result 2 (Chain rule). Let 𝑓 and 𝑢 be univariate differentiable functions. If 𝑓 (𝑥) can be written as
𝑓 (𝑢(𝑥)), then

𝑓 ′(𝑥) = 𝑓 ′(𝑢)𝑢′(𝑥).

Example 2. Consider 𝑓 (𝑥) = 𝑒2𝑥2 . To use the chain rule, let 𝑢 = 2𝑥2. Then

𝑓 ′(𝑥) = 𝑓 ′(𝑢)𝑢′(𝑥) = 𝑒𝑢(4𝑥) = 4𝑥𝑒2𝑥
2
.

Now consider 𝑔(𝑥) = log(𝑥2 + 5). Again, let 𝑣 = 𝑥2 + 5. Then

𝑔′(𝑥) = 𝑔′(𝑣)𝑣′(𝑥) = (
1
𝑣)

2𝑥 =
2𝑥

𝑥2 + 5
.
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3 Multivariate functions

Let 𝑓 be a multivariate function; for expositional ease, assume that it is a function of three vari-
ables, 𝑥 , 𝑦 , and 𝑧. The partial derivative of 𝑓 with respect to its 𝑥 , at (𝑥0, 𝑦0, 𝑧0), is

lim
Δ𝑥→0

𝑓 (𝑥0 + Δ𝑥 , 𝑦0, 𝑧0) − 𝑓 (𝑥0, 𝑦0, 𝑧0)
Δ𝑥

,

provided that the above limit exists. The partial derivative of 𝑓 with respect to 𝑦 and 𝑧 are anal-
ogously defined.

When the partial derivative of 𝑓 with respect to 𝑥 exists, it is the derivative of 𝑓 with respect
to 𝑥 holding all other variables fixed; it is denoted 𝜕𝑓

𝜕𝑥 . Consequently, to calculate partial deriva-
tives, we just need to take all other variables as constants, and apply the rules we introduced in
Section 2.2 to 𝑥𝑗 .

Example 3. Let 𝑓 ∶ ℝ2 → ℝ be defined as

𝑓 (𝑥 , 𝑦) = 𝑥2 + 𝑥𝑦 + 𝑦 + 1,

then
𝜕𝑓
𝜕𝑥

= 2𝑥 + 𝑦, and
𝜕𝑓
𝜕𝑦

= 𝑥 + 1.

Let 𝑔 ∶ ℝ2
++ → ℝ be defined as

𝑔(𝑥 , 𝑦) = 𝑒𝑥𝑦 + 𝑦 log 𝑥 + 3,

then
𝜕𝑔
𝜕𝑥

= 𝑦𝑒𝑥𝑦 +
𝑦
𝑥
, and

𝜕𝑔
𝜕𝑦

= 𝑥𝑒𝑥𝑦 + log 𝑥 .

Result 3 (Chain rule for partial derivatives). Let 𝑓 and 𝑢 be multivariate differentiable functions;
for expositional ease, assume that they are functions of three variables. If 𝑓 (𝑥 , 𝑦, 𝑧) can be written as
𝑓 (𝑢(𝑥 , 𝑦 , 𝑧)), then

𝜕𝑓
𝜕𝑥

= 𝑓 ′(𝑢)
𝜕𝑢
𝜕𝑥

,
𝜕𝑓
𝜕𝑦

= 𝑓 ′(𝑢)
𝜕𝑢
𝜕𝑦

, and
𝜕𝑓
𝜕𝑧

= 𝑓 ′(𝑢)
𝜕𝑢
𝜕𝑧

.

Example 4 (harder). Consider

𝑓 (𝑥 , 𝑦) =
√
3𝑥𝑦 + log(𝑥 + 1).
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Then let 𝑢(𝑥 , 𝑦) = 3𝑥𝑦 + log(𝑥 + 1), so 𝑓 (𝑢) =
√
𝑢; consequently,3

𝜕𝑓
𝜕𝑥

= 𝑓 ′(𝑢)
𝜕𝑢
𝜕𝑥

= (
1

2
√
𝑢)(3𝑦 +

1
𝑥 + 1)

=
3𝑦 + 1

𝑥+1

2
√
3𝑥𝑦 + log(𝑥 + 1)

;

and
𝜕𝑓
𝜕𝑦

= 𝑓 ′(𝑢)
𝜕𝑢
𝜕𝑦

=
3𝑥

2
√
3𝑥𝑦 + log(𝑥 + 1)

.

4 Optimization

4.1 Unconstrained Optimization

Consider a function of one variable, denote it by 𝑓 (𝑥). Sometimes we are interested in finding
the points at which 𝑓 (𝑥) attains its maximum; write the maximization problem as max 𝑓 (𝑥). If
𝑓 (𝑥) attains its maximum at 𝑥 ∗, we say that 𝑥 ∗ solves the maximization problem max 𝑓 (𝑥), or 𝑥 ∗

maximizes 𝑓 (𝑥). And 𝑓 (𝑥) is called the objective function of this maximization problem.
The following celebrated result, often called “the first-order condition”, says that if a differen-

tiable function 𝑓 (𝑥) attains its maximum at 𝑥 ∗, then the derivative of 𝑓 at 𝑥 ∗ is 0. This is illustrated
in Figure 6.

Result 4 (First-order condition, one variable). Let 𝑓 (𝑥) be a differentiable function. If 𝑥 ∗ maximizes
𝑓 (𝑥), then 𝑓 ′(𝑥 ∗) = 0.

Importantly, Result 4 states that if 𝑥 ∗ maximizes 𝑓 (𝑥), then the derivative of 𝑓 at 𝑥 ∗ is 0. Not the
other way around! In fact, as shown in Figure 7, we can easily find points such that the first-order
condition hold but they do not solve the maximization problem. In this class, however; so long as
𝑓 is differentiable, unless otherwise specified, you can solve the maximization problem by just taking
the first-order condition.

Result 4 can be generalized to functions with many variables; to ease exposition, we only state
the result for two variables. It says that, if a differentiable function 𝑓 (𝑥 , 𝑦) attains its maximum
at (𝑥 ∗, 𝑦∗), then all partial derivatives of 𝑓 at (𝑥 ∗, 𝑦∗) is 0.

Result 5 (First-order condition, two variables). Let 𝑓 (𝑥 , 𝑦) be a differentiable function. If (𝑥 ∗, 𝑦∗)
maximizes 𝑓 (𝑥 , 𝑦), then

𝜕𝑓
𝜕𝑥

(𝑥 ∗, 𝑦∗) =
𝜕𝑓
𝜕𝑦

(𝑥 ∗, 𝑦∗) = 0.

3Note that 𝑓 (𝑢) =
√
𝑢 = 𝑢1/2; and hence 𝑓 ′(𝑢) = (1/2)𝑢(1/2)−1 = (1/2)𝑢−1/2 = (1/2)(1/

√
𝑢) = 1/(2

√
𝑢).
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Figure 6: An illustration of the first-order condition.

𝑂 𝑥

𝑦

𝑔(𝑥) = 𝑥2/2

𝑂 𝑥

𝑦

𝑓 (𝑥) = 𝑥3/6

Figure 7: Points that satisfies the first-order condition may not maximize a function. The eft panel
plots 𝑔(𝑥) = 𝑥2/2; 𝑔′(0) = 0, but clearly 𝑥 = 0minimizes 𝑔. In the right panel, 𝑓 (𝑥) = 𝑥3/6; 𝑓 ′(0) = 0
but 𝑥 = 0 neither maximizes nor minimizes 𝑓 .

Example 5. Consider the unconstrained optimization problem

max
𝑥 ,𝑦

12𝑥 + 12𝑦 − 2𝑥2 − 𝑦2 + 2𝑥𝑦.
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The first-order conditions are

𝜕𝑓
𝜕𝑥

(𝑥 ∗, 𝑦∗) = 12 − 4𝑥 ∗ + 2𝑦∗ = 0;

𝜕𝑓
𝜕𝑦

(𝑥 ∗, 𝑦∗) = 12 − 2𝑦∗ + 2𝑥 ∗ = 0.

Add up the two equalities above, we get 𝑥 ∗ = 12. Plug this into one of the equalities above, we
have 𝑦∗ = 18. Thus, (𝑥 ∗, 𝑦∗) = (12, 18) solves this problem.

4.2 Constrained Optimization

Often in optimization problems, we face some constraints: Anne might want to buy the fastest
car in the world, but she doesn’t make that much of money; and Bob might want to go to the
summit of every mountain, but for safety reasons he has to stay on the hiking trail. A constrained
optimization problem can be written as

max
𝑥 ,𝑦

𝑓 (𝑥 , 𝑦) (1)

subject to 𝑔(𝑥 , 𝑦) = 𝑐

where 𝑐 is a number.
Naturally, to deal with constrained optimization problems, we would like to transform them

to unconstrained ones. One way of doing that is usually called the “substitution method”: we use
𝑔(𝑥 , 𝑦) = 𝑐 to express 𝑦 as a function of 𝑥 , say 𝑦 = ℎ(𝑥), and then plug 𝑦 = ℎ(𝑥) into the objective
function 𝑓 (𝑥 , 𝑦). To understand how it works, let us look at an example.

Example 6. Consider the constrained optimization problem

max
𝑥 ,𝑦

12𝑥 + 12𝑦 − 𝑥2 − 𝑦2 + 2𝑥𝑦;

subject to 𝑥 + 𝑦 = 4.

The constraint can be written as 𝑦 = 4 − 𝑥 ; plugging into the objective function, we get

max
𝑥

12𝑥 + 12(4 − 𝑥) − 𝑥2 − (4 − 𝑥)2 + 2𝑥(4 − 𝑥).

The first-order condition is

12 − 12 − 2𝑥 ∗ − 2(4 − 𝑥 ∗)(−1) + 8 − 4𝑥 ∗ = 0;
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simplify, we get
8𝑥 ∗ = 16,

and hence 𝑥 ∗ = 2. Consequently, 𝑦∗ = 4 − 𝑥 ∗ = 2. Therefore, the solution of the optimization
problem is (𝑥 ∗, 𝑦∗) = (2, 2).

Note that, however; the substitution method need not work for every constrained optimiza-
tion problem: in many cases, we might not be able to express 𝑦 as a function of 𝑥 using the
constraint. See Figure 8 for an example.

𝑂 𝑥

𝑦

𝑥2 + 𝑦2 = 1

Figure 8: The equation 𝑥2 + 𝑦2 = 1 does not define 𝑦 as a function of 𝑥 , which makes the substi-
tution method tricky.

The good news is, there is a more systematic way of solving a constrained optimization prob-
lem. The idea is that, by introducing an “auxiliary variable” 𝜆, we somehow incorporate the
constraint into the objective function.

For an example, consider the constrained optimization problem (1). We introduce a new func-
tion, which is called a Lagrangian:

L(𝑥 , 𝑦, 𝜆) = 𝑓 (𝑥 , 𝑦) + 𝜆[𝑐 − 𝑔(𝑥 , 𝑦)].

Nowwe solve the unconstrained optimization problemwith the objective function beingL(𝑥 , 𝑦 , 𝜆).
The first-order conditions are

𝜕L
𝜕𝑥

=
𝜕𝑓
𝜕𝑥

− 𝜆
𝜕𝑔
𝜕𝑥

= 0; (2)

𝜕L
𝜕𝑦

=
𝜕𝑓
𝜕𝑦

− 𝜆
𝜕𝑔
𝜕𝑦

= 0; (3)

𝜕L
𝜕𝜆

= 𝑐 − 𝑔(𝑥 , 𝑦) = 0. (4)
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Note that (4) is no more than writing down the constraint once again. Because 𝜆 is an auxiliary
variable and we do not really need to solve it, so we aim to eliminate it first. To this end, note
that (2) and (3) can be written as

𝜕𝑓 /𝜕𝑥
𝜕𝑔/𝜕𝑥

= 𝜆;

𝜕𝑓 /𝜕𝑦
𝜕𝑔/𝜕𝑦

= 𝜆.

Consequently,
𝜕𝑓 /𝜕𝑥
𝜕𝑔/𝜕𝑥
𝜕𝑓 /𝜕𝑦
𝜕𝑔/𝜕𝑦

=
𝜆
𝜆
= 1,

which is equivalent to
𝜕𝑓 /𝜕𝑥
𝜕𝑓 /𝜕𝑦

=
𝜕𝑔/𝜕𝑥
𝜕𝑔/𝜕𝑦

. (5)

Using (5) and (4), now we have two equations and two unknowns, and hence we can solve for
(𝑥 ∗, 𝑦∗).

For an example, consider the optimization problem in Example 6 again. Write down the La-
grangian,

L = 12𝑥 + 12𝑦 − 𝑥2 − 𝑦2 + 2𝑥𝑦 + 𝜆(4 − 𝑥 − 𝑦).

The first-order conditions are

𝜕L
𝜕𝑥

(𝑥 ∗, 𝑦∗) = 12 − 2𝑥 ∗ + 2𝑦∗ − 𝜆 = 0;

𝜕L
𝜕𝑦

(𝑥 ∗, 𝑦∗) = 12 − 2𝑦∗ + 2𝑥 ∗ − 𝜆 = 0;

𝜕L
𝜕𝜆

(𝑥 ∗, 𝑦∗) = 4 − 𝑥 ∗ − 𝑦∗ = 0.

The first two equations can be written as

12 − 2𝑥 ∗ + 2𝑦∗ = 𝜆.

12 − 2𝑦∗ + 2𝑥 ∗ = 𝜆;

and hence
12 − 2𝑥 ∗ + 2𝑦∗

12 − 2𝑦∗ + 2𝑥 ∗ =
𝜆
𝜆
= 1 ⇒ 12 − 2𝑥 ∗ + 2𝑦∗ = 12 − 2𝑦∗ + 2𝑥 ∗;

simplify, we get 𝑥 ∗ = 𝑦∗. Plug this into 4 − 𝑥 ∗ − 𝑦∗ = 0, the solution is (𝑥 ∗, 𝑦∗) = (2, 2), which is the
same as in Example 6.
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