Withholding Verifiable Information Supplementary Appendix (For Online Publication)

Denis Shishkin* Maria Titova[†] Kun Zhang[‡]
November 10, 2025

Contents

В	Supplementary Results for Ternary Actions	2
\mathbf{C}	Remaining Omitted Proofs	6
	C.1 Proof of Claim 1	6
	C.2 Proof of Corollary 2	7
	C.3 Proof of Claim 2	7
	C.4 Proof of Claim 3	8
D	Equilibrium Refinement	9
	D.1 Never-a-Weak-Best-Response (NWBR) Criterion	9
	D.2 Grossman-Perry-Farrell Equilibrium	10

^{*}Department of Economics, University of California San Diego, dshishkin@ucsd.edu.

[†]Department of Economics, Vanderbilt University, motitova@gmail.com.

[‡]School of Economics, University of Queensland, kun@kunzhang.org.

B Supplementary Results for Ternary Actions

In this section, we study the special case where the receiver has three actions: $N = \{1, 2, 3\}$. Recall that $\{\gamma_L, \gamma_H\}$ is feasible for the interval $[\underline{\omega}, \overline{\omega}]$ if there exists a mean preserving contraction of $F|_{[\underline{\omega}, \overline{\omega}]}$ whose support is $\{\gamma_L, \gamma_H\}$.

Claim B.1. If there does not exist $y \in [0, \gamma_2]$ such that $\{\gamma_2, \gamma_3\}$ is feasible for [y, 1], then every bi-pooling solution is implementable.

Proof of Claim B.1. By Lemma 6, $\{\gamma_2, \gamma_3\}$ is feasible for the interval [y, 1] if and only if

- (i) $y \le \gamma_2 \le m(y) \le \gamma_3 \le 1$, and
- (ii) $\mathbb{E}[\omega \mid \omega \in [\eta(\gamma_2; y), 1]] \ge \gamma_3$,

where $m(y) := \mathbb{E}[\omega \mid \omega \in [y, 1]]$, and $\eta(\gamma_2; y)$ is such that $\mathbb{E}[\omega \mid \omega \in [y, \eta(\gamma_2)] = \gamma_2$. Then if there does not exist $y \in [0, \gamma_2]$ such that $\{\gamma_2, \gamma_3\}$ is feasible for [y, 1], there are two cases:

- (a) (i) fails to hold for all $y \in [0, \gamma_2]$;
- (b) (i) holds for some $y \in [0, \gamma_2]$, but (ii) fails for all such y's.

For Case (a), the only possibility is that $m(y) \geq \gamma_3$. If this is the case, every bipooling solution G has supp $(G) \subseteq [\gamma_3, 1]$, and hence the unique bi-pooling partition has $B_3 = [0, 1]$, and revelation proofness holds.

For Case (b), let us introduce some notation first. For each i=1,2, if there exists $h \geq 0$ such that $\mathbb{E}[\omega \mid \omega \in [h,1]] = \gamma_i$, set $h(\gamma_i) = h$; otherwise let $h(\gamma_i) = 0$. Then for every $y \in [0,\gamma_2] \cap [h(\gamma_2),h(\gamma_3)]$, (i) holds. If (ii) fails for all such y's, it must be that $\mathbb{E}[\omega \mid \omega \in [\eta(\gamma_2;h(\gamma_2)),1]] < \gamma_3$. Note that this is not possible if $h(\gamma_2) > 0$: if this is the case, $\eta(\gamma_2;h(\gamma_2)) = 1$ by definition, so it must be that $\mathbb{E}[\omega \mid \omega \in [\eta(\gamma_2;h(\gamma_2)),1]] \geq \gamma_3$, a contradiction. Consequently, in Case (b), (ii) must fail for y=0, and hence every bipooling solution G has $G(\gamma_3) - G(\gamma_3^-) = 1 - F(h(\gamma_3))$, and supp $G(\gamma_3) = [h(\gamma_3), 1]$. Since $h(\gamma_3) < \gamma_3$ by definition, revelation proofness must hold. This completes the proof.

Claim B.2. All bi-pooling solutions to the information design problem are associated with the same bi-pooling partition.

Proof of Claim B.2. It can be readily seen from the proof of Claim B.1 that, if there does not exist $y \in [0, \gamma_2]$ such that $\{\gamma_2, \gamma_3\}$ is feasible for [y, 1], then all bi-pooling

solutions are associated with the same bi-pooling partition. Now suppose there exists $y \in [0, \gamma_2]$ such that $\{\gamma_2, \gamma_3\}$ is feasible for [y, 1]. Let Y denote the set of such y's; Lemma 6 implies that Y is a closed subset of $[0, \gamma_2]$. Consequently, the commitment payoff can be identified by the lower endpoint of the bi-pooling interval. Hence, each of them corresponds to a point in Y that maximizes the sender's ex-ante payoff (recall that $u_1 = 0$):

$$\pi(y) = (1 - F(y)) \left[\frac{\gamma_3 - m(y)}{\gamma_3 - \gamma_2} u_2 + \frac{m(y) - \gamma_2}{\gamma_3 - \gamma_2} u_3 \right].$$

Taking derivative,

$$\pi'(y) = -f(y) \left[\frac{\gamma_3 - m(y)}{\gamma_3 - r_1} u_2 + \frac{m(y) - \gamma_2}{\gamma_3 - \gamma_2} u_3 \right] + (1 - F(y)) \frac{u_3 - u_2}{\gamma_3 - u_2} m'(y),$$

where

$$m'(y) = \frac{(m(y) - y)f(y)}{1 - F(y)}.$$

Consequently,

$$\pi'(y) = \frac{f(y)}{\gamma_3 - \gamma_2} \left[(m(y) - y) (u_3 - u_2) - (\gamma_3 - m(y)) u_2 - (m(y) - \gamma_2) u_3 \right],$$

$$= \frac{f(y)}{\gamma_3 - \gamma_2} \left[u_3 (\gamma_2 - y) - u_2 (\gamma_3 - y) \right]$$

and its sign is determined by the terms between the squared brackets, which implies that π is single-peaked in y. Therefore, there must exist a unique z that maximizes $\pi(y)$ on Y. As a consequence, all bi-pooling solutions are associated with the same bi-pooling partition \mathcal{B} with $B_1 = [0, z], B_2 = [\underline{b}_2, \overline{b}_2],$ and $B_3 = [z, \underline{b}_2] \cup [\overline{b}_2, 1].$

Claim B.3. If no commitment solution is implementable, the sender-preferred laminar PE \mathcal{B} is such that $B_1 = [0, y]$, $B_2 = [h, b]$, and $B_3 = [y, h] \cup [b, 1]$, where $\gamma_2 < b \leq \gamma_3$, and h > 0 and $y \geq 0$ are defined by

$$\mathbb{E}\left[\omega\mid\omega\in[h,b]\right]=\gamma_2\quad and\quad \mathbb{E}\left[\omega\mid\omega\in[y,h]\cup[b,1]\right]=\gamma_3. \tag{B.1}$$

Furthermore,

$$u_3 \le \frac{\gamma_3 - y}{\gamma_2 - y} u_2. \tag{B.2}$$

Proof of Claim B.3. By Theorem 2, if B_2 has nonempty interior, it must be that $\mathbb{E}[\omega \mid$

 $\omega \in B_2$] = γ_2 , and $\mathbb{E}[\omega \mid \omega \in B_3] = \gamma_3$. Then to obtain the statement it suffices to show three things: (1) $b > \gamma_2$, namely B_2 has nonempty interior; (2) there exists such an h; and (3) there exists such a y.

We show that B_2 has nonempty interior first. Suppose to the contrary that $\operatorname{int}(B_2) = \emptyset$, then by Claim 7, there are two cases: $B_3 = [0,1]$, and $B_3 = [z,1]$ for some z > 0. If $B_3 = [0,1]$, since the sender attains highest possible payoff in equilibrium, it must be that a commitment outcome is implementable, a contradiction. If instead $B_3 = [z,1]$ for some z > 0, it must be that $z \le \gamma_2$, as otherwise recommending action 2 on $[z, \gamma_2]$ is a profitable deviation. Consequently, this bi-pooling partition is revelation-proof, and hence a commitment outcome is implementable, again a contradiction. Therefore, it must be that B_2 has nonempty interior.

To see that there exists such an h, we first claim that $\mathbb{E}[\omega \mid \omega \in [0, \gamma_3]] \leq \gamma_2$. Suppose not, so

$$\mathbb{E}[\omega \mid \omega \in [0, \gamma_3]] > \gamma_2. \tag{B.3}$$

Without loss of generality, assume that there exists a bi-pooling solution features [y, 1] bi-pooled to $\{\gamma_2, \gamma_3\}$ for some $y \in [0, \gamma_2]$. Consequently, there exist \bar{b}_1 and \underline{b}_1 with $y \leq \underline{b}_1 \leq \bar{b}_1$ such that the (unique) bi-pooling partition associated with the bi-pooling solution \mathcal{B} is given by $B_1 = [0, y]$, $B_2 = [\underline{b}_1, \bar{b}_1]$, and $B_3 = [y, \underline{b}_1] \cup [\bar{b}_1, 1]$. Then because $\mathbb{E}[\omega \mid \omega \in B_2] = \gamma_2$ and $\underline{b}_1 \geq 0$, we must have $\bar{b}_1 \leq \gamma_3$ by (B.3). Thus, the bi-pooling solution must be implementable, a contradiction. As a consequence, it must be that $\mathbb{E}[\omega \mid \omega \in [h, b]] = \gamma_2$; it remains to show that h > 0. If instead h = 0, then $\mathbb{E}[\omega \mid \omega \in [0, \gamma_3]] = \gamma_2$. Consequently, it must be that $B_2 = [0, \gamma_3]$ and $B_3 = [\gamma_3, 1]$. This cannot be optimal: for any $\varepsilon \in (0, \gamma_2)$, define $\hat{B}_1 = [\varepsilon, \gamma_3]$, and $\hat{B}_2 = [0, \varepsilon] \cup [\gamma_3, 1]$. Then for ε small enough, $\mathbb{E}[\omega \mid \omega \in \hat{B}_i] \geq \gamma_i$ for each i = 1, 2, and the sender's ex-ante payoff is strictly higher. Thus, it must be that h > 0.

To show that there exists such a y, it suffices to show that $\mathbb{E}[\omega \mid \omega \in [0, h] \cup [b, 1]] \le \gamma_3$. Suppose not, so $\mathbb{E}[\omega \mid \omega \in [0, h] \cup [b, 1]] > \gamma_3$. Let $\delta > 0$ be small enough, and let $\epsilon(\delta)$ be such that

$$\mathbb{E}\left[\omega \mid \omega \in [h + \varepsilon(\delta), b - \delta]\right] = \gamma_2.$$

Now define $\tilde{B}_1 = [h + \varepsilon(\delta), b - \delta]$, and $\tilde{B}_2 = [0, h + \varepsilon(\delta)] \cup [b - \delta, 1]$. Because the density

 $^{^{1}}B_{3}$ must have nonempty interior, or else revelation proofness cannot be satisfied. Also by revelation proofness, $b \leq \gamma_{3}$.

 $^{^{2}}$ If such y does not exist, by Claim B.1, the bi-pooling solution must be implementable, a contradiction.

f is strictly positive, for small enough δ , $\mathbb{E}[\omega \mid \omega \in \tilde{B}_2] \geq \gamma_3$, and $\mu_F(\tilde{B}_2) > \mu_F(B_3)$. This creates a profitable deviation to the sender without violating revelation proofness.

Finally, to show that (B.2) must hold, suppose to the contrary that

$$u_3 > \frac{\gamma_3 - y}{\gamma_2 - y} u_2.$$

An argument analogous to Case 1 (II) in the proof of Proposition 2 shows that the sender has a profitable deviation, and hence the bi-pooling partition \mathcal{B} with $B_1 = [0, y]$, $B_2 = [h, b]$, and $B_3 = [y, h] \cup [b, 1]$ cannot be associated with a sender-preferred laminar PE, a contradiction.

By Claim B.3, the sender's ex-ante payoff in a sender-preferred equilibrium can be written as

$$\bar{V}(b) = u_2[F(b) - F(h(b))] + u_3[1 - F(b) + F(h(b)) - F(y(b))],$$

where h(b) and y(b) are implicitly defined by the two equations in (B.1).

Claim B.4. If no commitment outcome is implementable, the sender's ex-ante payoff in a sender-preferred equilibrium, $\bar{V}(b)$, is increasing in b.

Proof of Claim B.4. Directly,

$$\bar{V}'(b) = (u_2 - u_3) \left[f(b) - f(h) \frac{\mathrm{d}h}{\mathrm{d}b} \right] - u_3 f(y) \frac{\mathrm{d}y}{\mathrm{d}b}.$$
 (B.4)

Using (B.1), by the implicit function theorem,

$$\frac{\mathrm{d}h}{\mathrm{d}b} = -\frac{(b - \gamma_2) f(b)}{(\gamma_2 - h) f(h)},\tag{B.5}$$

$$\frac{\mathrm{d}y}{\mathrm{d}b} = -\frac{(b-h)(\gamma_3 - \gamma_2) f(b)}{(\gamma_2 - h)(\gamma_3 - y) f(y)}.$$
(B.6)

Plugging (B.5) and (B.6) into (B.4),

$$\bar{V}'(b) = (u_2 - u_3) f(b) \left(1 + \frac{b - \gamma_2}{\gamma_2 - h} \right) + u_3 f(b) \frac{(b - h) (\gamma_3 - \gamma_2)}{(\gamma_2 - h) (\gamma_3 - y)}
= \left[(u_2 - u_3) \frac{b - h}{\gamma_2 - h} + u_3 \frac{(\gamma_3 - \gamma_2) (b - h)}{(\gamma_2 - h) (\gamma_3 - y)} \right] f(b)
= \left[u_2 \frac{b - h}{\gamma_2 - h} - u_3 \frac{(b - h) (\gamma_2 - y)}{(\gamma_2 - h) (\gamma_3 - y)} \right] f(b)
= \left[u_2 (\gamma_3 - y) - u_3 (\gamma_2 - y) \right] \frac{(b - h) f(b)}{(\gamma_2 - h) (\gamma_3 - y)},$$

and we see that $\bar{V}'(b) \geq 0$ if and only if $u_2(\gamma_3 - y) \geq u_3(\gamma_2 - y)$. Then since no commitment solution is implementable, by Claim B.3, (B.2) implies that $\bar{V}'(b) \geq 0$, and hence the sender's ex-ante payoff in a sender-preferred equilibrium is increasing in b.

C Remaining Omitted Proofs

C.1 Proof of Claim 1

To solve for a sender-preferred equilibrium, we find a bi-pooling solution to the corresponding information design problem first, and check whether it is implementable using Corollary 1. If it is, a sender-preferred equilibrium is associated with a barely obedient bi-pooling partition \mathcal{B} that is also associated with the commitment solution.³

Now suppose that no commitment solution is implementable. By Theorem 2, there exist y, h, and b such that $B_2 = [h, b]$, and $B_3 = [y, h] \cup [b, 1]$.⁴ By Claim B.3, there exist $y \ge 0$ and h > 0 such that

$$\mathbb{E}\left[\omega \mid \omega \in [h, b]\right] = \gamma_2$$
 and $\mathbb{E}\left[\omega \mid \omega \in [y, h] \cup [b, 1]\right] = \gamma_3$.

Consequently, y and h can be implicitly defined as functions of b, and hence the sender's

³One may wonder what if the bi-pooling solution found above is not implementable, but there exists another bi-pooling solution that is implementable. This can never happen when there are three actions: by Claim B.1, all bi-pooling solutions induce essentially the same bi-pooling partition.

⁴If both B_2 and B_3 are intervals, just set y = h.

ex-ante payoff can be parametrized by b, so long as $b \leq \gamma_3$:

$$\bar{V}(b) = u_2[F(b) - F(h(b))] + u_3[1 - F(b) + F(h(b)) - F(y(b))].$$

By Claim B.4, \bar{V} is increasing in b. Hence, the partition corresponding to the sender's preferred equilibrium can be found by setting $b = \gamma_3$, which yields the expression in the statement of the claim.

C.2 Proof of Corollary 2

Recall that $\gamma_1 := 0$ and u_0 is normalized to zero; hence when n = 3, Equation (4) in the main text reduces to

$$\frac{u_3 - u_2}{\gamma_3 - \gamma_2} > \frac{u_2}{\gamma_2 - \max\{0, h(\gamma_2; \gamma_3)\}}$$
 (C.1)

And because $h(\gamma_2; \gamma_3) \geq 0$, the right-hand side of (C.1) further reduces to $u_2/(\gamma_2 - h(\gamma_2; \gamma_3))$. Then since f is increasing, $\gamma_3 - \gamma_2 \geq \gamma_2 - h(\gamma_2; \gamma_3)$; thus, if $u_3 - u_2 > u_2$, or $u_3 > 2u_2$, (C.1) must hold. Consequently, by Proposition 2, every bi-pooling solution can be implemented. By Claim B.1, all bi-pooling solutions induce the same bi-pooling partition. Then because the set of bi-pooling solutions is the set of extreme points of the solution correspondence of the information design problem, all commitment solutions must be associated with the same bi-pooling partition. Thus, every commitment outcome is implementable.

C.3 Proof of Claim 2

Let ω_q denote the cutoff quality that the buyer is indifferent between purchasing q-1 and q units: it solves

$$\omega_q U(q) - pq = \omega_q U(q-1) - p(q-1),$$

so $\omega_q = p/[U(q) - U(q-1)]$. Letting $\omega_0 = 0$ and $\omega_{n+1} = 1$, the buyer buys $q \in \{0, 1, \ldots, n\}$ units of the product if and only if $\omega \in [\omega_q, \omega_{q+1}]$. If P > 2A, $U''(q)/[U'(q)]^2$ is strictly decreasing in q, and thus

$$\omega_{q+1} - \omega_q = \frac{p}{U(q+1) - U(q)} - \frac{p}{U(q) - U(q-1)}$$

is strictly decreasing in q. By noting that $v_q - v_{q-1} = p - c$ for all $q \in \{0, 1, ..., n\}$, Claim 2 is implied by Corollary 2.

C.4 Proof of Claim 3

If either α_b^j increases for all $j=1,\ldots,N$, or β_b^j increases for all $j=1,\ldots,N$, or both, γ_2^j decreases for every j, and hence γ_j^m decreases. By Claim 1, when no commitment outcome can be implemented, the sender's ex-ante payoff is given by

$$\bar{V}(\gamma_3^m) = u_2[F(\gamma_3^m) - F(h(\gamma_3^m))] + u_3[1 - F(\gamma_3^m) + F(h(\gamma_3^m)) - F(y(\gamma_3^m))],$$

where h and y are implicitly defined by

$$\mathbb{E}\left[\omega \mid \omega \in [h, \gamma_3^m]\right] = \gamma_2^m \quad \text{and} \quad \mathbb{E}\left[\omega \mid \omega \in [y, h] \cup [\gamma_3^m, 1]\right] = \gamma_3^m.$$

Now

$$\bar{V}'(\gamma_3^m) = (u_2 - u_3) \left[f(\gamma_3^m) - f(h) \frac{\mathrm{d}h}{\mathrm{d}\gamma_3^m} \right] - u_3 f(y) \frac{\mathrm{d}y}{\mathrm{d}\gamma_3^m}. \tag{C.2}$$

By the implicit function theorem,

$$\frac{\mathrm{d}h}{\mathrm{d}\gamma_2^m} = -\frac{(\gamma_3^m - \gamma_2^m) f(\gamma_3^m)}{(\gamma_2^m - h) f(h)},\tag{C.3}$$

$$\frac{\mathrm{d}y}{\mathrm{d}\gamma_3^m} = \frac{(\gamma_2^m - h)\left[1 - f(\gamma_3^m) + F(h) - F(y)\right]}{(\gamma_2^m - h)(\gamma_3^m - y)f(y)} - \frac{(\gamma_3^m - h)(\gamma_3^m - \gamma_2^m)f(\gamma_3^m)}{(\gamma_2^m - h)(\gamma_3^m - y)f(y)}.$$
 (C.4)

Plug (C.3) and (C.4) into (C.2),

$$\bar{V}'(\gamma_3^m) = -\frac{(\gamma_2^m - h) \left[1 - f(\gamma_3^m) + F(h) - F(y)\right] u_3}{(\gamma_2^m - h) (\gamma_3^m - y)} - \frac{(\gamma_3^m - h) (\gamma_2^m - y) f(\gamma_3^m)}{(\gamma_2^m - h) (\gamma_3^m - y)} u_3 + \frac{(\gamma_3^m - h) (\gamma_3^m - y) f(\gamma_3^m)}{(\gamma_2^m - h) (\gamma_3^m - y)} u_2,$$

whose sign is determined by

$$-(\gamma_2^m - h)(1 - F(\gamma_2^m) + F(h) - F(y)) - (\gamma_3^m - h)f(\gamma_3^m)[(\gamma_2^m - y)u_3 - (\gamma_2^m - y)u_2].$$
(C.5)

By Claim B.3, if no comment outcome is implementable, it must be that $(\gamma_2^m - y)u_3 \le (\gamma_3^m - y)u_2$. Consequently, the sign of the second term of (C.5) must be positive, and the first term has a strictly negative sign. Hence as γ_3^m decreases, the expert's ex-ante

payoff in her preferred equilibrium strictly decreases if the second term is larger in absolute value, which establishes the statement.

D Equilibrium Refinement

In this section, we show that any partitional equilibrium (PE) defined in Section 3 survives the Never-a-Weak-Best-Response (NWBR) criterion proposed by Cho and Kreps (1987), and is a Grossman-Perry-Farrell equilibrium (Bertomeu and Cianciaruso, 2018). We use the term "type" instead of "state" henceforth to ease exposition.

D.1 Never-a-Weak-Best-Response (NWBR) Criterion

We introduce some notation first. For any $m \in \mathcal{C}$, let MBR(m) denote the set of all mixed strategy best responses for the receiver to message m for any belief $p(\cdot \mid m)$.⁵ Moreover, let v_{ω}^* denote the equilibrium payoff of type ω . Finally, for any equilibrium and an off-path message m, define

$$D(\omega, m) = \left\{ \rho \in MBR(m) : v_{\omega}^* < \sum_{i \in N} u_i \rho_i \right\},\,$$

and

$$D^{0}(\omega, m) = \left\{ \rho \in MBR(m) : v_{\omega}^{*} = \sum_{i \in N} u_{i} \rho_{i} \right\};$$

in words, $D(\omega, m)$ is the set of mixed strategy best responses that make type ω strictly prefer m to her equilibrium message, and $D^0(\omega, m)$ is the set of mixed strategy best responses that make type ω exactly indifferent.

Definition 1. An equilibrium (σ, τ, p) survives the **NWBR criterion** if for every $m \in \mathcal{C}$ and any $\omega, \omega' \in [0, 1]$, $D^0(\omega', m) \subseteq \bigcup_{\omega \neq \omega'} D(\omega, m)$ implies that $\omega' \notin \operatorname{supp} p(\cdot \mid m)$.

Claim D.1. For every PE (σ, τ, p) , there exists p' such that (σ, τ, p') survives the NWBR criterion.

Proof. Fix a PE (σ, τ, p) , and let \mathcal{B} denote the associated partition. For every $m \notin \mathcal{B}$, let $\ell = \min\{i : m \cap B_i \neq \varnothing\}$. Let p' be such that $p'(\cdot \mid B_i) = p(\cdot \mid B_i)$ for all

⁵Note that p must satisfy supp $p(\cdot \mid m) \subseteq m$.

 $i = 0, \ldots, n - 1$, and for any $m \notin \mathcal{B}$, let

$$p'(\min m \cap B_{\ell} \mid m) = 1. \tag{D.1}$$

By the definition of PE, the receiver never mixes on path, and hence for any $\omega' \in [0,1]$, $D^0(\omega',m) = \{\delta_k\}$ if and only if $\omega \in B_k \setminus (\cup_{i>k} B_i)$, where δ_k is the Dirac measure at action k. Furthermore, define

$$M = \{k \in N : k \text{ is such that } m \cap B_k \neq \emptyset\};$$

then the lowest action in M is ℓ . Now for any $\omega' \in [0,1]$,

$$\bigcup_{\omega \neq \omega'} D(\omega, m) = \{ \rho \in \Delta(M) : \operatorname{supp} \rho \subseteq \{ a_k, a_{k+1} \} \text{ with } k \geq \ell, \text{ and } \rho(a_\ell) < 1 \}.$$

Then $D^0(\omega', m) \subseteq \bigcup_{\omega \neq \omega'} D(\omega, m)$ if and only if $D^0(\omega', m) = \{\delta_k\}$ with $k > \ell$, which is in turn equivalent to $\omega' \in \bigcup_{k > \ell} (B_k \setminus (\bigcup_{i > k} B_i))$. Then (D.1) implies that $\omega' \notin \text{supp } p'(\cdot \mid m)$. Consequently, (σ, τ, p') survives the NWBR criterion.

D.2 Grossman-Perry-Farrell Equilibrium

Definition 2. Fix a PE (σ, τ, p) . Say that $m^* \in \mathcal{C}$ is a self-signaling set if

$$m^* = \left\{\omega \in m^* : v\left(\mathbb{E}[\omega \,|\, \omega \in m^*]\right) > v\left(\mathbb{E}[\omega \,|\, \omega \in \sigma(\omega)]\right)\right\}.$$

An PE is a **Grossman-Perry-Farrell equilibrium** if there does not exist a self-signaling set.

Claim D.2. Every PE is a Grossman-Perry-Farrell equilibrium.

Proof. Fix a PE (σ, τ, p) , and let \mathcal{B} denote the associated partition. Suppose there exists a self-signaling set m^* . Let

$$\bar{k} := \max \{ i \in \mathbb{N} : \text{there exists } \omega \in m^* \text{ such that } \sigma(\omega) = B_i \}.$$

Because m^* is a self-signaling set, it must be that $\mathbb{E}[\omega \mid \omega \in m^*] \geq \gamma_{\bar{k}+1}$. But then

⁶We could have defined a self-signaling set for any equilibrium, but doing that largely complicates the notation: here, $\sigma(\cdot)$ is a well-defined function that maps a state to a subset of the state space because (σ, τ, p) is an ORE.

revelation proofness of \mathcal{B} implies that there must exist $\omega' \in m^*$ such that $\sigma(\omega') = B_j$ with $j \geq \bar{k} + 1$, a contradiction.

References

Bertomeu, J. and D. Cianciaruso (2018): "Verifiable disclosure," *Economic Theory*, 65, 1011–1044.

Cho, I.-K. and D. M. Kreps (1987): "Signaling Games and Stable Equilibria," *The Quarterly Journal of Economics*, 102, 179–221.