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Motivation

Rapid technological development has brought more and more new products to us

In selling a new product, often the seller not only sets a price but also provides some information
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Motivation

In selling a new product, often the seller not only sets a price but also provides some information

1. Is there a rationale for “charging less than they could” for sellers who set both the price and
the information provision policy?
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Motivation

In selling a new product, often the seller not only sets a price but also provides some information

2. Why do we see a lot of variation in information provision policies among new products?

(a) Innovative image editing app “Pixelmator” (b) e-ink tablet “reMarkable”
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The Setting

A seller has a product with unknown match value faces a buyer with unit demand

• the seller sets a price and chooses how much information to provide about the product

• after seeing the price and information, the buyer can costly search for an alternative product

• the seller has limited information about the buyer’s knowledge of her alternatives

• seeking robustness, the seller evaluates any selling strategy by its worst-case profit
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Main Tradeoff and Research Questions

Main tradeoff: search deterrence versus surplus extraction

• information provision can be used to boost demand through deterring buyer’s search

• but this may require providing her with sufficiently high surplus via a low price

Research questions:

• What is the optimal selling strategy if the seller can design both the price and info provision?

• Is the buyer better off when learning about her alternatives becomes easier?

• How do the results shed light on selling different kinds of new products?
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Preview of Results

Optimal selling strategy:

• providing full information is optimal when the search cost is sufficiently high

• different kinds of partial information can be optimal for lower search costs

Comparative statics:

• the price is nonmonotonic in the search cost

• information provision is generically more precise as search cost increases

Implications for the sale of new products:

• rationale for the large variations in information provision policies among new products

• technological advancements that reduce search costs need not benefit the consumers

• a lower price may be used, pairing with info provision, to ensure effective search deterrence
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Relationship to the Literature

First to study a robust pricing problem with information provision

• Robust pricing: e.g., Carrasco et al. (2018), Du (2018), Hinnosaar and Kawai (2020)
▶ this paper emphasizes the interaction between price and information

• Pricing with info provision and consumer search: e.g., Wang (2017), Lyu (2023)
▶ the buyer in their setting searches for more precise information, here for another product

Encompasses search frictions and robustness concerns in selling new products

• Selling new products with info provision: Boleslavsky et al. (2017), Feinmesser et al. (2021)

Explores a novel search deterrence channel: information provision can be used to deter search

• Price-based tools: e.g., Armstrong and Zhou (2016)

• Search obfuscation: e.g., Ellison (2016) Further
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Model



Model Basics

• (Risk neutral) Buyer’s match value with the product is 𝑥 ∈ {0, 1}, with prior 𝜇 = ℙ(𝑥 = 1)

• Neither Buyer nor Seller knows 𝑥, but both know 𝜇

• Seller’s production cost is normalized to zero

• Seller sets a price 𝑝 and provides information about the match value (next slide)

• Buyer can draw an outside option 𝑣 from a distribution 𝐺 on [0, 1] at cost 𝑠 ≥ 0 (search cost)
▶ Call 𝐺 the outside option distribution
▶ denote the mean of 𝐺 by 𝜉 , assume 𝑠 < 𝜉
▶ Seller knows 𝑠, but can also allow for some uncertainty over 𝑠

• Buyer knows 𝐺, but Seller does not: she only knows that 𝐺 is on [0, 1] and its mean is 𝜉
• Free recall: after searching, Buyer can costlessly go back to buy Seller’s new product

▶ the price does not change when Buyer comes back (anonymity)
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Information Provision

• Seller provides information about the match value by an experiment (𝑆, 𝜒)
▶ consists of a set 𝑆 of signal realizations and a map 𝜒 ∶ {0, 1} → Δ(𝑆)

• Observing a signal realization, Buyer updates her beliefs and forms posterior 𝑤

• After updating, Buyer’s posterior expected value is 1 ⋅ 𝑤 + 0 ⋅ (1 − 𝑤) = 𝑤

• Therefore, an experiment induces a posterior value distribution 𝐻
▶ providing information affects Buyer’s value distribution

• In fact, one can think of Seller as if directly choosing posterior value distribution 𝐻 so long as
𝔼𝐻[𝑤] = 𝜇 (e.g., Kamenica and Gentzkow, 2011) Details

▶ let 𝐻 represent Seller’s information provision policy henceforth

• Then Seller’s strategy can be summarized by (𝑝, 𝐻)

• Buyer’s net value from buying is 𝑤 − 𝑝
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Robust Optimization

To deal with the uncertainty, Seller takes a robust/maxmin approach

• maximizes the minimal profit across all outside option distributions on [0, 1] with mean 𝜉

• she chooses price 𝑝 and information provision policy 𝐻 to maximize her payoff as if there is
an adversarial nature who observes (𝑝, 𝐻), then chooses 𝐺 on [0, 1] with mean 𝜉 to minimize
Seller’s payoff
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Timeline

Timeline:

• Seller chooses a price 𝑝 and an information provision policy 𝐻

• Nature chooses outside option distribution 𝐺
• Buyer observes 𝑝, draws a posterior expected value 𝑤 from 𝐻, and she also observes 𝐺

▶ buys immediately if the net value from Seller’s product, 𝑤 − 𝑝, is large enough
▶ otherwise pays search cost 𝑠, draws an outside option with value 𝑣 from 𝐺
▶ if searches, will go back to Seller when 𝑤 − 𝑝 > 𝑣

10



Main Results



Robustly Optimal Selling Strategy: Information Provision Policies

Three kinds of information provision policies show up in an optimal selling strategy: Main

𝐻

𝑤

1

1𝑝
(a) Full information

𝐻

𝑤

1

1𝑝
(b) Uniform information

𝐻

𝑤

1

𝑝 1

(c)Mixture information
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Robustly Optimal Selling Strategy

𝐻

𝑤1𝑝
Full info

𝐻

𝑤1𝑝
Uniform

𝐻

𝑤𝑝 1
Mixture

Theorem (Informal)

• For small search costs, uniform information is optimal, and the price is 𝑝𝑟 > 𝑠/𝜉 .

• For large search costs, full information is optimal, and the price is 𝑝𝑟 = 𝑠/𝜉 .
• For intermediate search costs:

▶ Depending on the prior 𝜇 and the mean of the outside option distribution 𝜉 , both strategies above
can be optimal

▶ When 𝜇 is high and 𝜉 is low, mixture information is optimal, and the price is 𝑝𝑟 = 𝑠/𝜉 .
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Seller’s Objective

• Let 𝑎 be defined by 𝑎 = 𝔼𝐺[max{𝑎, 𝑣}] − 𝑠
▶ 𝑎 represents the net value Buyer needs to forgo search

• Buyer purchases Seller’s product without search whenever 𝑤 − 𝑝 ≥ 𝑎
• If instead 𝑤 − 𝑝 < 𝑎

▶ Buyer pays search cost 𝑠, investigates the outside option, and goes back to buy if 𝑤 − 𝑝 > 𝑣

• Hence, Buyer buys from Seller when 𝑤 − 𝑝 ≥ min{𝑎, 𝑣}, or 𝑤 ≥ 𝑝 + min{𝑎, 𝑣}
▶ Prob. of eventual purchase when price is 𝑝 and outside option has value 𝑣 is 1 − 𝐻(𝑝 + min{𝑎, 𝑣})

• Seller’s revenue for a fixed outside option distribution 𝐺 is

𝑝𝔼𝐺[1 − 𝐻(𝑝 + min{𝑎, 𝑣})]
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Solving Seller’s Problem

Transform to a static problem first: (Armstrong, 2017 and Choi et al., 2018)

Define 𝑧 = min{𝑎, 𝑣}, and let �̂� denote its cdf

• by definition of 𝑎, 𝔼�̂�[𝑧] = 𝜉 − 𝑠, and 𝑧 ∈ [0, 1 − 𝑠/𝜉] Details

Seller’s problem:
max
(𝑝,𝐻)

min
�̂�

𝑝𝔼�̂�[1 − 𝐻(𝑝 + 𝑧)]

Two-step approach for solving it: Details

• for every fixed 𝑝, solve for the optimal 𝐻 by identifying a saddle point of a zero-sum game

• then optimize over 𝑝
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Why Linearity?

𝐻

𝑤1𝑝

𝐻

𝑤1𝑝

𝐻

𝑤𝑝 1

Under linearity of 𝐻, Seller’s demand is constant in Nature’s choice of �̂�:

𝔼�̂�[1 − 𝐻(𝑝 + 𝑧)] = 1 − 𝐻 (𝑝 + 𝔼�̂�[𝑧]) = 1 − 𝐻(𝑝 + 𝜉 − 𝑠)

“Matching-pennies” style equilibrium: Alternative

• linearity of 𝐻 makes Nature indifferent between contracting and spreading mass in choosing �̂�
• Nature also chooses �̂� in such a way that makes Seller indifferent

Takeaway: linearity of 𝐻 hedges well against Nature
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Mass Point at the Top

𝐻

𝑤1𝑝

𝐻

𝑤1𝑝

𝐻

𝑤𝑝 1

Mass point “at the top” of 𝐻 to deter search?
• Call an information provision policy with a mass point “at the top” a deterrence policy

• To make sure that its effectiveness is not affected by Nature’s choice, the mass point must be
at 𝑤 − 𝑝 ≥ 1 − 𝑠/𝜉⏟

largest z

, or 𝑤 ≥ 𝑝 + 1 − 𝑠/𝜉 Details

• This is only possible when 𝑝 + 1 − 𝑠/𝜉 ≤ 1, or 𝑝 ≤ 𝑠/𝜉

Takeaway: a deterrence policy is only effective when 𝑝 ≤ 𝑠/𝜉 .

⇒ Highlights the trade-off between search deterrence and surplus extraction More
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Summarizing...

𝐻

𝑤1𝑝

𝐻

𝑤1𝑝

𝐻

𝑤𝑝 1

Summarizing:

• if 𝑝 > 𝑠/𝜉 , Seller would employ a linear distribution without a mass point “at the top”

• if 𝑝 ≤ 𝑠/𝜉 , a mass point “at the top” can be helpful, and linear “on the interior” for hedging

𝑠/𝜉 is the upper bound on price for effective search deterrence (“the upper bound” for simplicity)
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Robustly Optimal Selling Strategy: Details

𝐻

𝑤1𝑝

Blue region: uniform information is optimal, optimal price 𝑝𝑟 > 𝑠/𝜉

• search cost small, so is 𝑠/𝜉 , deterrence policy unprofitable

• using uniform information allows charging a higher price and extracting more surplus
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Robustly Optimal Selling Strategy: Details

𝐻

𝑤1𝑝

Violet region: full information is optimal, optimal price 𝑝𝑟 = 𝑠/𝜉

• as 𝑠 gets large, so is 𝑠/𝜉 , hence eventually more profitable to use a deterrence policy

• the tension between search deterrence and surplus extraction is alleviated for larger 𝑠
• providing full information helps Seller secure a sizable demand while charging a higher price

▶ identifies those who highly value the product (prob. 𝜇) and make them buy without search
▶ maximally differentiates Seller’s product from Buyer’s outside option, allows extracting more surplus
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Robustly Optimal Selling Strategy: Details

𝐻

𝑤𝑝 1

Intermediate regions: a cutoff in 𝜇 More

• below the cutoff same as blue region, above the cutoff a deterrence policy is optimal, 𝑝𝑟 = 𝑠/𝜉 ;
▶ green: 𝜉 large, use full info to maximally differentiate and soften competition
▶ maroon: 𝜉 small, mixture info is optimal since important to attract searchers to come back

• price vs demand effect: former dominates for low 𝜇, latter dominates for high 𝜇
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Recap: Robustly Optimal Selling Strategy

Theorem
• If 𝑠 < 𝐵1(𝜉) (Blue), uniform information is optimal, price is 𝑝𝑟 > 𝑠/𝜉 .

• If 𝑠 ≥ 𝐵3(𝜉) (Violet), full information is optimal, and the price is 𝑝𝑟 = 𝑠/𝜉 .

• If 𝐵1(𝜉) ≤ 𝑠 < 𝐵3(𝜉), there are two cases:

▶ If 𝐵1(𝜉) ≤ 𝑠 < 𝐵2(𝜉) (Maroon), there exists �̌� ∈ (0, 1) s.t.
• for 𝜇 < �̌�, uniform information is optimal, price 𝑝𝑟 > 𝑠/𝜉 ; and
• for 𝜇 ≥ �̌�, mixture information is optimal, and price 𝑝𝑟 = 𝑠/𝜉 .

▶ If 𝐵2(𝜉) ≤ 𝑠 < 𝐵3(𝜉) (Green), there exists �̂� ∈ (0, 1) s.t.
• for 𝜇 < �̂�, uniform information is optimal, price 𝑝𝑟 > 𝑠/𝜉 ; and
• for 𝜇 ≥ �̂�, full information is optimal, and price 𝑝𝑟 = 𝑠/𝜉 .

• providing full information is optimal if the search cost is sufficiently large, and

• different kinds of partial information provision policies are optimal for smaller search costs

• in each of the cases accompanied by a suitable price that reflects the main trade-off
19



Implications



New Products

Three kinds of new products:

• evolutionary products: existing products made slightly better
example: smart thermostat

• revolutionary products: a completely new concept
example: 3D-printer

• alternatives to existing products: revolutionary on some aspects at the cost of losing some
existing features
example: portable speaker

Search cost measures how difficult it is for a buyer to find the best alternative
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Implications

Evolutionary products: low 𝑠, 𝜇 not too far from 𝜉
⟹ providing partial information is optimal
(recall the image editor “Pixelmator”)

𝐻

𝑤1𝑝
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Implications

Alternatives to existing products: high 𝑠, 𝜇 not too far from 𝜉
⟹ divide potential consumers into “lovers” and “haters”, and
serve the former only
(recall e-ink tablet “reMarkable”)

𝐻

𝑤1𝑝
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Implications

Revolutionary products: 𝜇 sufficiently high compared to 𝜉
⟹ identify some “die-hard fans”, and the rest of the potential
consumers get noisy signals
(think about some Apple products and Tesla)

𝐻

𝑤𝑝 1
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Comparative Statics

Proposition

(i) The price 𝑝𝑟 is non-monotonic in the search cost 𝑠.
(ii) The info provision policy generically becomes more informative as the search cost increases.

𝑝

𝑂 𝑠�̂�

Stems from the trade-off between deterrence and extraction:

• small 𝑠⟹ no deterrence, charge higher price

• as 𝑠 increases, so is 𝑠/𝜉 , and hence deterrence policies
become increasingly attractive

• at a threshold Seller would switch to a deterrence policy
even if she must lower the price
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Comparative Statics

Proposition

(i) The price 𝑝𝑟 is non-monotonic in the search cost 𝑠.
(ii) The info provision policy generically becomes more informative as the search cost increases.

• as search cost increases, so long as it doesn’t cross the “jump down point”, price also
increases

• an increase in price typically leads to more precise information Details

• crossing the “jump down point” calls for providing more info when the match value is high
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Two Benchmarks

Zero search cost Details

• no point deterring search⟹ “mass point at the top” no longer useful

• Seller’s hedging motive renders uniform information optimal

Known outside option distribution Details

• full information is always optimal

• does not generate as clear-cut implications for new products as the main model

• the main trade-off (search deterrence vs surplus extraction) and some interesting features
(e.g., nonmonotonicity of price) remain
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Extensions I

Recognizable Buyer identity Details

• Exploding offers: always superior

• Buy-now discounts: need not be useful

Search cost distribution designed by Nature

• deterrence policies less attractive, otherwise similar

“Safe” outside option 𝑢0 > 0 that she can consume without incurring the search cost

• does not change the qualitative features of the main results

Allowing random prices

• Seller’s design object is the distribution of Buyer’s net values, but many insights remain valid
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Extensions II

Buyer’s match value is distributed continuously on an interval (instead of binary matching value)

• many insights carry over: e.g.,
▶ the trade-off between search deterrence and surplus extraction, and price comparative statics
▶ linearity “hedges well” against Nature

Alternative assumptions on Seller’s knowledge

• in the main model Seller knows 𝔼𝐺[𝑣] = 𝜉 and supp(𝐺) = [0, 1]

• qualitative insights remain unaffected by small adjustments in the upper and lower bounds of
the support

• if instead of the support condition, Seller knows that Var(𝐺) ≤ 𝜏, main insights intact so long
as 𝜏 not too large
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Summary

I characterize the robustly optimal way of selling a new product when the seller

• sets a price and chooses how much information to provide about the product

• faces uncertainty over the buyer’s alternatives and seeks robustness to it

The seller trades off between search deterrence and surplus extraction

• full information optimal when search cost is high, otherwise provide partial information

• the price is non-monotonic in the search cost

• information provision generically becomes more precise as search cost increases

Concrete implications for the sale of (different kinds of) new products

• evolutionary products, alternatives to existing products, and revolutionary products

• technological advancements that reduce search costs need not benefit the consumers

• shed light on the variety of price-info combinations we observe across products
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Further Related Literature

Monopoly pricing with information provision: e.g.,

• Bergemann, Heumann, and Morris (2023), Li and Zhao (2023), Wei and Green (2023)

Also related to information design under non-probabilistic uncertainty: Back

• Dworczak and Pavan (2022), Hu and Weng (2021), Kosterina (2022), Sapiro-Gheiler (2021)

The robustly optimal information provision policy features similarities to

• robust contracting (e.g., Carroll and Meng, 2016), and

• information design contests (e.g., Boleslavsky and Cotton, 2015, 2018; Au and Whitmeyer, 2023)



Information as Experiment

Seller provides information by an experiment (𝑆, 𝜒) Model

• a signal 𝜎 realizes according to 𝜒(𝑥) when the match value is 𝑥 ∈ {0, 1}

• Buyer updates using Bayes rule, and gets a posterior ℙ(𝑥 = 1 | 𝜎)

• the law of iterated expectation requires 𝔼 [ℙ(𝑥 = 1 | 𝜎)] = ℙ(𝑥 = 1) = 𝜇

• “merging” all signals that leads to the same posterior 𝑤: 𝔼𝐻[𝑤] = 𝜇

• conversely, for any given 𝐻 with 𝔼𝐻[𝑤] = 𝜇, let 𝑆 = supp(𝐻) and

𝑝1(𝜎) = ℎ(𝜎)𝜎/𝜇, and 𝑝0(𝜎) = ℎ(𝜎)(1 − 𝜎)/(1 − 𝜇),

for all 𝜎 ∈ 𝑆, where 𝑝𝑥 and ℎ are the “generalized pdf” of 𝜒(𝑥) and 𝐻, respectively



Details about 𝑧 = min{𝑎, 𝑣}

Recall that 𝑎 = 𝔼[max{𝑎, 𝑣}] − 𝑠 Back

1. The mean of 𝑧 is

𝔼[𝑧] = 𝔼[min{𝑎, 𝑣}] = 𝔼[𝑎 + 𝑣 − max{𝑎, 𝑣}] = 𝔼[𝔼[max{𝑎, 𝑣}] − 𝑠 + 𝑣 − max{𝑎, 𝑣}] = 𝔼[𝑣] − 𝑠 = 𝜉 − 𝑠

2. In search problems, a decision maker prefers a more dispersed distribution
▶ the most dispersed distribution is the binary distribution with support on {0, 1}; denote its CDF by 𝐺𝐵
▶ now by definition of 𝑎,

𝑠 = 𝔼𝐺𝐵 [max{𝑎, 𝑣}] − 𝑎 = 𝜉 max{𝑎, 1} + (1 − 𝜉)max{𝑎, 0} − 𝑎 = 𝜉(1 − 𝑎),

and hence the largest 𝑎 is 1 − 𝑠/𝜉
▶ therefore, 𝑧 ∈ [0, 1 − 𝑠/𝜉]



More on Buyer Search

• Observe that

𝑎 = 𝔼𝐺[max{𝑎, 𝑣}] − 𝑠 ⇔ 𝑠 = ∫
𝑎

0
𝑎d𝐺(𝑣) +∫

1

𝑎
𝑣 d𝐺(𝑣) − 𝑎

⇔ 𝑠 = ∫
𝑎

0
𝑎d𝐺(𝑣) +∫

1

𝑎
𝑣 d𝐺(𝑣) −∫

1

0
𝑎d𝐺(𝑣)

⇔ 𝑠 = ∫
1

𝑎
(𝑣 − 𝑎)d𝐺(𝑣)

• From the last equality we see that the left-hand side is constant in 𝑎 and the right-hand side
is strictly decreasing in 𝑎

• So if Buyer’s net value is larger than 𝑎, she would not search

Back



Two-Step Approach: Technical Details

Optimal posterior value distribution for a fixed 𝑝:

• Seller and Nature play a zero-sum game in which Seller chooses 𝐻 and Nature chooses �̂�:

max
𝐻
min
�̂�
Φ(𝐻, �̂� ∣ 𝑝), where Φ(𝐻, �̂� ∣ 𝑝) = 𝔼�̂�[1 − 𝐻(𝑝 + 𝑧)]

• 𝐻∗(𝑝) is optimal if and only if there exists �̂�∗(𝑝) such that (𝐻∗(𝑝), �̂�∗(𝑝)) is a Nash equilibrium of
the zero-sum game

• equivalently, (𝐻∗(𝑝), �̂�∗(𝑝)) is a saddle point: for all feasible 𝐻 and �̂�,

Φ(𝐻, �̂�∗(𝑝) ∣ 𝑝) ≤ Φ(𝐻∗(𝑝), �̂�∗(𝑝) ∣ 𝑝) ≤ Φ(𝐻∗(𝑝), �̂� ∣ 𝑝)

• it then remains to verify that there exists an outside option distribution 𝐺 that induces �̂�

Solve for optimal 𝑝: max𝑝∈[0,1] 𝑝Φ∗(𝑝), where Φ∗(𝑝) = Φ(𝐻∗(𝑝), �̂�∗(𝑝) ∣ 𝑝) Back



Finding the Saddle Point I

Observing Seller’s choice of (𝑝, 𝐻), Nature’s problem can be written as

max
�̂�∈𝑀(𝜉−𝑠)

∫
1− 𝑠𝜉

0
𝐻(𝑝 + 𝑧) d�̂�(𝑧),

where 𝑀(𝜉 − 𝑠) is the set of distributions with support on [0, 1 − 𝑠/𝜉] whose mean is 𝜉 − 𝑠

Taking 𝑝 as given, Seller’s problem can be written as

max
𝐻∈𝑀(𝜇)

∫
1

0
𝐺𝑝(𝑤) d𝐻(𝑤)

where
𝐺𝑝(𝑤) = {

0 if 𝑤 < 𝑝
�̂�(𝑤 − 𝑝) if 𝑤 ≥ 𝑝



Finding the Saddle Point II

Lemma
For a fixed 𝑝, (𝐻∗, �̂�∗) is a saddle point if and only if

𝐻∗ ∈ argmax
𝐻∈𝑀(𝜇)

∫
1

0
𝐺∗𝑝(𝑤) d𝐻(𝑤), and �̂�∗ ∈ argmax

�̂�∈𝑀(𝜉−𝑠)
∫

1− 𝑠𝜉

0
𝐻∗(𝑝 + 𝑧) d�̂�(𝑧)

where
𝐺∗𝑝(𝑤) = {

0 if 𝑤 < 𝑝,
�̂�∗(𝑤 − 𝑝) if 𝑤 ≥ 𝑝.

Kamenica and Gentzkow (2011): Seller’s and Nature’s values are �̃�∗𝑝(𝜇) and �̃�∗(𝑝 + 𝜉 − 𝑠), respectively

• for a function 𝑓 , ̃𝑓 denotes its concave hull

In equilibrium, Seller make �̃�∗(𝑝 + ⋅ ) linear on [0, 1 − 𝑠/𝜉] and Nature make �̃�∗𝑝 linear on [0, 1]

• both parties are indifferent between spreading and contracting mass Back



The Virtue of Linearity: An Alternative Illustration

What happens if 𝐻 is not linear? Observing (𝑝, 𝐻), Nature maximizes 𝔼�̂�[𝐻(𝑝 + 𝑧)] Back

𝑧̃𝑧

𝔼[𝐻(𝑝 + 𝑧)]

1 − 𝑠/𝜉𝜉 − 𝑠

𝐻(𝑝 + 𝑧)

−𝑝 𝑧−𝑝 0

𝐻(𝑝 + 𝑧)

1 − 𝑠/𝜉̂𝑧𝜉 − 𝑠

𝔼[𝐻(𝑝 + 𝑧)]



Mass Point at the Top: Details

Seller’s problem: max(𝑝,𝐻) min�̂� 𝑝𝔼�̂�[1 − 𝐻(𝑝 + 𝑧)]⟹ Nature maximizes: 𝔼�̂�[𝐻(𝑝 + 𝑧)] Back

What if there is a mass point in 𝐻 at 𝑦 < 𝑝 + 1 − 𝑠/𝜉? Not robust to Nature’s choice.

𝑧−𝑝 0

𝐻(𝑝 + 𝑧)

1 − 𝑠/𝜉𝑦 − 𝑝𝜉 − 𝑠

𝔼[𝐻(𝑝 + 𝑧)]



Why 𝐻 May Take Value at 𝑤 = 1?

Why the supremum of supp(𝐻) is 1 for any optimal 𝐻?

𝐻

𝑤

1

𝑝′𝑝″

𝐻𝑝′

𝐻𝑝″

1

Suppose not, then it is profitable to jointly increase the price (𝑝′ to 𝑝″) and increase the likelihood
of high posterior values (𝐻𝑝′ to 𝐻𝑝″ ) Back



More Details

• Cutoffs in search cost 𝐵1(𝜉), 𝐵2(𝜉), and 𝐵3(𝜉) are hump-shaped

• No information is never optimal: the price is too low Back



Information Comparative Statics: Details

“more informative as search cost increases”⇔𝐻𝑠2 is a mean-preserving spread of 𝐻𝑠1 if 𝑠1 < 𝑠2

𝐻

𝑤

1

𝑝1 𝑝2

𝐻𝑠1

𝐻𝑠2

1

Back



Zero Search Cost

Proposition
Suppose 𝑠 = 0. Uniform information is always optimal, and the robust price is 𝑝0 ∶= lim𝑠↘0 𝑝𝑟 .

When search frictions are absent,

• the trade-off between search deterrence and surplus extraction disappears, and

• Seller’s hedging motive renders uniform information optimal. Back



Known Outside Option Distribution

Now suppose Seller knows the outside option distribution 𝐺

• assume that 𝐺 has full support, and admits a log-concave density 𝑔

Proposition
The optimal selling strategy provides full information, and the optimal price is

𝑝𝑜 = {1 − 𝑎 if 1 − 𝑎 ≥ 𝑝ℎ𝐺 (1 − 𝑝ℎ) ,
𝑝ℎ if 1 − 𝑎 < 𝑝ℎ𝐺 (1 − 𝑝ℎ) ,

where 𝑝ℎ solves
𝑝 = 𝐺(1 − 𝑝)𝑔(1 − 𝑝) .

Intuition: the absence of hedging motive makes maximally differentiating the product optimal



Known Outside Option Distribution

Corollary
For every outside option distribution 𝐺, there exists �̂�𝐺 ∈ (0, 𝜉) such that 𝑝𝑜 = 𝑝ℎ for every 𝑠 < �̂�𝐺 ,
and 𝑝𝑜 = 1 − 𝑎 for every 𝑠 ≥ �̂�𝐺 . Furthermore, at 𝑠 = �̂�𝐺 , the optimal price drops from 𝑝ℎ to 1 − 𝑎 (�̂�𝐺).

Compared to the main model:

• the main trade-off (search deterrence vs surplus extraction) and some interesting features
(e.g., nonmonotonicity of price) remain

• less uncertainty⟹ more precise information provision

• does not generate as clear-cut implications for new products Back



Recognizable Buyer Identity

Suppose now Seller can recognize whether Buyer is a first-time visitor or came back from search

• One way that Seller can take advantage of this is to make an exploding offer: she commits not
to sell to Buyer if she does not buy in her first visit

• Another possibility is that Seller commits to a price path: if Buyer comes back to buy she has
to pay a higher price



Recognizable Buyer Identity I: Exploding Offers

Proposition
Suppose that Seller can recognize whether Buyer is a first-time visitor. Then

(i) if Seller can commit to an exploding offer, it is optimal to offer 𝑝 = 1 − 𝜉 + 𝑠 with full
information;

(ii) for all 𝜇, 𝜉 ∈ (0, 1) and 0 ≤ 𝑠 < 𝜉 , Seller earns strictly higher profits than the case that she
cannot distinguish between first-time visitors and searchers.

(iii) if Seller cannot commit to the price, and there is a cost of returning to Seller 𝑟 > 0, then the
equilibrium outcome is the same as Seller committing to exploding offers.

Intuition:

• exploding offer is outcome equivalent to that the outside option distribution is 𝛿𝜉
• full information is optimal because it creates the highest total surplus, and Seller can
appropriate all the surplus



Recognizable Buyer Identity II: Price Discrimination

Suppose now that while the information provision policy cannot be changed, Seller can commit to
a price path (𝑝1, 𝑝2) with 𝑝1 < 𝑝2 Back

• 𝑝1 and 𝑝2 are the prices charged if Buyer buys immediately or after search, respectively

Proposition
Suppose that Seller can recognize whether Buyer is a first-time visitor. Let (𝑝𝑟 , 𝐻∗) be a robustly
optimal selling strategy, and let 𝐺∗ be the corresponding worst-case outside option distribution.
If Seller deviates by committing to a pair of prices (𝑝1, 𝑝2), where either 𝑝1 = 𝑝𝑟 or 𝑝2 = 𝑝𝑟 , then

(i) If Nature cannot detect this deviation and hence the outside option distribution is still 𝐺∗,
Seller can benefit from such a deviation unless 𝐻∗ corresponds to full information;

(ii) If Nature can detect this deviation and optimally responds to it by choosing a new outside
option distribution, Seller cannot benefit from such a deviation.
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