## Uncharted Waters: Selling a New Product Robustly

Kun Zhang
University of Queensland

## Motivation

Rapid technological development has brought more and more new products to us
In selling a new product, often the seller not only sets a price but also provides some information

## Motivation

In selling a new product, often the seller not only sets a price but also provides some information

1. Is there a rationale for "charging less than they could" for sellers who set both the price and the information provision policy?


By Michael V. Marn, Eric V. Roegner, and Craig C. Zawada

$$
\begin{array}{ccc}
\alpha_{0}^{\circ} & \text { 角 } & \stackrel{\downarrow}{\downarrow} \\
\text { Share } & \text { Print } & \text { Download }
\end{array}
$$

Companies habitually charge less than they could for new offerings. It's a terrible habit.

## Motivation

In selling a new product, often the seller not only sets a price but also provides some information
2. Why do we see a lot of variation in information provision policies among new products?

## Try Pixelmator Pro for free for 7 days.

This trial lets you use the full Pixelmator Pro app with no restrictions for 7 days. Your Mac will love this app.

Download now
(a) Innovative image editing app "Pixelmator"

## Satisfaction guarantee

Try reMarkable and a Connect subscription risk free. If you decide to return it, we offer free returns and a full refund.

(b) e-ink tablet "reMarkable"

## The Setting

A seller has a product with unknown match value faces a buyer with unit demand

- the seller sets a price and chooses how much information to provide about the product
- after seeing the price and information, the buyer can costly search for an alternative product
- the seller has limited information about the buyer's knowledge of her alternatives
- seeking robustness, the seller evaluates any selling strategy by its worst-case profit


## Main Tradeoff and Research Questions

Main tradeoff: search deterrence versus surplus extraction

- information provision can be used to boost demand through deterring buyer's search
- but this may require providing her with sufficiently high surplus via a low price

Research questions:
-What is the optimal selling strategy if the seller can design both the price and info provision?

- Is the buyer better off when learning about her alternatives becomes easier?
- How do the results shed light on selling different kinds of new products?


## Preview of Results

Optimal selling strategy:

- providing full information is optimal when the search cost is sufficiently high
- different kinds of partial information can be optimal for lower search costs

Comparative statics:

- the price is nonmonotonic in the search cost
- information provision is generically more precise as search cost increases

Implications for the sale of new products:

- rationale for the large variations in information provision policies among new products
- technological advancements that reduce search costs need not benefit the consumers
- a lower price may be used, pairing with info provision, to ensure effective search deterrence


## Relationship to the Literature

First to study a robust pricing problem with information provision

- Robust pricing: e.g., Carrasco et al. (2018), Du (2018), Hinnosaar and Kawai (2020)
- this paper emphasizes the interaction between price and information
- Pricing with info provision and consumer search: e.g., Wang (2017), Lyu (2023)
- the buyer in their setting searches for more precise information, here for another product

Encompasses search frictions and robustness concerns in selling new products

- Selling new products with info provision: Boleslavsky et al. (2017), Feinmesser et al. (2021)

Explores a novel search deterrence channel: information provision can be used to deter search

- Price-based tools: e.g., Armstrong and Zhou (2016)
- Search obfuscation: e.g., Ellison (2016)


## Outline

## Model

Main Results

Implications

Comparative Statics

Discussion

Summary
"eas

## Model Basics

- (Risk neutral) Buyer's match value with the product is $x \in\{0,1\}$, with prior $\mu=\mathbb{P}(x=1)$
- Neither Buyer nor Seller knows x, but both know $\mu$
- Seller's production cost is normalized to zero
- Seller sets a price $p$ and provides information about the match value (next slide)
- Buyer can draw an outside option $v$ from a distribution $G$ on $[0,1]$ at cost $s \geq 0$ (search cost)
- Call $G$ the outside option distribution
- denote the mean of $G$ by $\xi$, assume $s<\xi$
- Seller knows s, but can also allow for some uncertainty over s
- Buyer knows $G$, but Seller does not: she only knows that $G$ is on $[0,1]$ and its mean is $\xi$
- Free recall: after searching, Buyer can costlessly go back to buy Seller’s new product
- the price does not change when Buyer comes back (anonymity)


## Information Provision

- Seller provides information about the match value by an experiment ( $\mathrm{S}, \mathrm{X}$ )
- consists of a set $S$ of signal realizations and a map $x:\{0,1\} \rightarrow \Delta(S)$
- Observing a signal realization, Buyer updates her beliefs and forms posterior w
- After updating, Buyer's posterior expected value is $1 \cdot w+0 \cdot(1-w)=w$
- Therefore, an experiment induces a posterior value distribution $H$
- providing information affects Buyer's value distribution
- In fact, one can think of Seller as if directly choosing posterior value distribution $H$ so long as $\mathbb{E}_{H}[w]=\mu(e . g .$, Kamenica and Gentzkow, 2011)
- let H represent Seller's information provision policy henceforth
- Then Seller's strategy can be summarized by $(p, H)$
- Buyer's net value from buying is $w-p$


## Robust Optimization

To deal with the uncertainty, Seller takes a robust/maxmin approach

- maximizes the minimal profit across all outside option distributions on $[0,1]$ with mean $\xi$
- she chooses price $p$ and information provision policy $H$ to maximize her payoff as if there is an adversarial nature who observes $(p, H)$, then chooses $G$ on $[0,1]$ with mean $\xi$ to minimize Seller's payoff


## Timeline

## Timeline:

- Seller chooses a price $p$ and an information provision policy $H$
- Nature chooses outside option distribution G
- Buyer observes $p$, draws a posterior expected value $w$ from $H$, and she also observes $G$
- buys immediately if the net value from Seller's product, $w$ - $p$, is large enough
- otherwise pays search cost $s$, draws an outside option with value $v$ from $G$
- if searches, will go back to Seller when $w-p>v$


## Main Results

## Robustly Optimal Selling Strategy: Information Provision Policies

Three kinds of information provision policies show up in an optimal selling strategy:
Main

(a) Full information

(b) Uniform information

(c) Mixture information

## Robustly Optimal Selling Strategy



## Theorem (Informal)

- For small search costs, uniform information is optimal, and the price is $p_{r}>s / \xi$.
- For large search costs, full information is optimal, and the price is $p_{r}=s / \xi$.
- For intermediate search costs:
- Depending on the prior $\mu$ and the mean of the outside option distribution $\xi$, both strategies above can be optimal
- When $\mu$ is high and $\xi$ is low, mixture information is optimal, and the price is $p_{r}=s / \xi$.


## Seller's Objective

- Let $a$ be defined by $a=\mathbb{E}_{G}[\max \{a, v\}]-s$
- a represents the net value Buyer needs to forgo search
- Buyer purchases Seller's product without search whenever w-p $\geq a$
- If instead $w-p<a$
- Buyer pays search cost $s$, investigates the outside option, and goes back to buy if $w-p>v$
- Hence, Buyer buys from Seller when $w-p \geq \min \{a, v\}$, or $w \geq p+\min \{a, v\}$
- Prob. of eventual purchase when price is $p$ and outside option has value $v$ is $1-H(p+\min \{a, v\})$
- Seller's revenue for a fixed outside option distribution $G$ is

$$
p \mathbb{E}_{G}[1-H(p+\min \{a, v\})]
$$

## Solving Seller's Problem

Transform to a static problem first: (Armstrong, 2017 and Choi et al., 2018)
Define $z=\min \{a, v\}$, and let $\hat{G}$ denote its $c d f$

- by definition of $a, \mathbb{E}_{\hat{G}}[z]=\xi-s$, and $z \in[0,1-s / \xi]$

Seller's problem:

$$
\max _{(p, H)} \min _{\hat{G}} p \mathbb{E}_{\hat{G}}[1-H(p+z)]
$$

Two-step approach for solving it:

- for every fixed $p$, solve for the optimal $H$ by identifying a saddle point of a zero-sum game
- then optimize over $p$


## Why Linearity?



Under linearity of $H$, Seller's demand is constant in Nature's choice of $\hat{G}$ :

$$
\mathbb{E}_{\hat{G}}[1-H(p+z)]=1-H\left(p+\mathbb{E}_{\hat{G}}[z]\right)=1-H(p+\xi-s)
$$

"Matching-pennies" style equilibrium:

- linearity of $H$ makes Nature indifferent between contracting and spreading mass in choosing $\hat{G}$
- Nature also chooses $\hat{G}$ in such a way that makes Seller indifferent

Takeaway: linearity of $H$ hedges well against Nature

## Mass Point at the Top





Mass point "at the top" of $H$ to deter search?

- Call an information provision policy with a mass point "at the top" a deterrence policy
- To make sure that its effectiveness is not affected by Nature's choice, the mass point must be at $w-p \geq \underbrace{1-s / \xi}_{\text {largest } z}$, or $w \geq p+1-s / \xi$
- This is only possible when $p+1-s / \xi \leq 1$, or $p \leq s / \xi$

Takeaway: a deterrence policy is only effective when $p \leq s / \xi$.
$\Rightarrow$ Highlights the trade-off between search deterrence and surplus extraction

## Summarizing...



Summarizing:

- if $p>s / \xi$, Seller would employ a linear distribution without a mass point "at the top"
- if $p \leq s / \xi$, a mass point "at the top" can be helpful, and linear "on the interior" for hedging
$s / \xi$ is the upper bound on price for effective search deterrence ("the upper bound" for simplicity)


## Robustly Optimal Selling Strategy: Details




Blue region: uniform information is optimal, optimal price $p_{r}>s / \xi$

- search cost small, so is $s / \xi$, deterrence policy unprofitable
- using uniform information allows charging a higher price and extracting more surplus


## Robustly Optimal Selling Strategy: Details




Violet region: full information is optimal, optimal price $p_{r}=s / \xi$

- as $s$ gets large, so is $s / \xi$, hence eventually more profitable to use a deterrence policy
- the tension between search deterrence and surplus extraction is alleviated for larger $s$
- providing full information helps Seller secure a sizable demand while charging a higher price
- identifies those who highly value the product (prob. $\mu$ ) and make them buy without search
- maximally differentiates Seller's product from Buyer's outside option, allows extracting more surplus


## Robustly Optimal Selling Strategy: Details




Intermediate regions: a cutoff in $\mu$

- below the cutoff same as blue region, above the cutoff a deterrence policy is optimal, $p_{r}=s / \xi$;
- green: $\xi$ large, use full info to maximally differentiate and soften competition
- maroon: $\xi$ small, mixture info is optimal since important to attract searchers to come back
- price vs demand effect: former dominates for low $\mu$, latter dominates for high $\mu$


## Recap: Robustly Optimal Selling Strategy

## Theorem

- If $s<B_{1}(\xi)$ (Blue), uniform information is optimal, price is $p_{r}>s / \xi$.
- If $s \geq B_{3}(\xi)$ (Violet), full information is optimal, and the price is $p_{r}=s / \xi$.
- If $B_{1}(\xi) \leq s<B_{3}(\xi)$, there are two cases:
- If $B_{1}(\xi) \leq s<B_{2}(\xi)$ (Maroon), there exists $\check{\mu} \in(0,1)$ s.t.
- for $\mu<\mu$, uniform information is optimal, price $p_{r}>s / \xi$; and
- for $\mu \geq \mu \check{\mu}$, mixture information is optimal, and price $p_{r}=s / \xi$.
- If $B_{2}(\xi) \leq s<B_{3}(\xi)$ (Green), there exists $\hat{\mu} \in(0,1)$ s.t.
- for $\mu<\hat{\mu}$, uniform information is optimal, price $p_{r}>s / \xi$; and
- for $\mu \geq \hat{\mu}$, full information is optimal, and price $p_{r}=s / \xi$.
- providing full information is optimal if the search cost is sufficiently large, and
- different kinds of partial information provision policies are optimal for smaller search costs
- in each of the cases accompanied by a suitable price that reflects the main trade-off


## Implications

## New Products

Three kinds of new products:

- evolutionary products: existing products made slightly better
example: smart thermostat
- revolutionary products: a completely new concept
example: 3D-printer
- alternatives to existing products: revolutionary on some aspects at the cost of losing some existing features
example: portable speaker

Search cost measures how difficult it is for a buyer to find the best alternative

## Implications



Evolutionary products: low $s, \mu$ not too far from $\xi$
$\Longrightarrow$ providing partial information is optimal
(recall the image editor "Pixelmator")


## Implications



Alternatives to existing products: high s, $\mu$ not too far from $\xi$
$\Longrightarrow$ divide potential consumers into "lovers" and "haters", and serve the former only
(recall e-ink tablet "reMarkable")


## Implications



Revolutionary products: $\mu$ sufficiently high compared to $\xi$ $\Longrightarrow$ identify some "die-hard fans", and the rest of the potential consumers get noisy signals
(think about some Apple products and Tesla)


## Comparative Statics

## Comparative Statics

## Proposition

(i) The price $p_{r}$ is non-monotonic in the search cost $s$.
(ii) The info provision policy generically becomes more informative as the search cost increases.


Stems from the trade-off between deterrence and extraction:

- small $s \Longrightarrow$ no deterrence, charge higher price
- as s increases, so is $s / \xi$, and hence deterrence policies become increasingly attractive
- at a threshold Seller would switch to a deterrence policy even if she must lower the price


## Comparative Statics

## Proposition

(i) The price $p_{r}$ is non-monotonic in the search cost $s$.
(ii) The info provision policy generically becomes more informative as the search cost increases.

- as search cost increases, so long as it doesn't cross the "jump down point", price also increases
- an increase in price typically leads to more precise information
- crossing the "jump down point" calls for providing more info when the match value is high

Discussion

## Two Benchmarks

Zero search cost

- no point deterring search $\Longrightarrow$ "mass point at the top" no longer useful
- Seller's hedging motive renders uniform information optimal

Known outside option distribution

- full information is always optimal
- does not generate as clear-cut implications for new products as the main model
- the main trade-off (search deterrence vs surplus extraction) and some interesting features (e.g., nonmonotonicity of price) remain


## Extensions I

Recognizable Buyer identity

- Exploding offers: always superior
- Buy-now discounts: need not be useful

Search cost distribution designed by Nature

- deterrence policies less attractive, otherwise similar
"Safe" outside option $u_{0}>0$ that she can consume without incurring the search cost
- does not change the qualitative features of the main results

Allowing random prices

- Seller's design object is the distribution of Buyer's net values, but many insights remain valid


## Extensions II

Buyer's match value is distributed continuously on an interval (instead of binary matching value)

- many insights carry over: e.g.,
- the trade-off between search deterrence and surplus extraction, and price comparative statics
- linearity "hedges well" against Nature

Alternative assumptions on Seller's knowledge

- in the main model Seller knows $\mathbb{E}_{G}[v]=\xi$ and $\operatorname{supp}(G)=[0,1]$
- qualitative insights remain unaffected by small adjustments in the upper and lower bounds of the support
- if instead of the support condition, Seller knows that $\operatorname{Var}(G) \leq T$, main insights intact so long as $T$ not too large


## Summary

## Summary

I characterize the robustly optimal way of selling a new product when the seller

- sets a price and chooses how much information to provide about the product
- faces uncertainty over the buyer's alternatives and seeks robustness to it

The seller trades off between search deterrence and surplus extraction

- full information optimal when search cost is high, otherwise provide partial information
- the price is non-monotonic in the search cost
- information provision generically becomes more precise as search cost increases

Concrete implications for the sale of (different kinds of) new products

- evolutionary products, alternatives to existing products, and revolutionary products
- technological advancements that reduce search costs need not benefit the consumers
- shed light on the variety of price-info combinations we observe across products


# Thank you! 

zhangkun081@gmail.com

## Backup Slides

## Further Related Literature

Monopoly pricing with information provision: e.g.,

- Bergemann, Heumann, and Morris (2023), Li and Zhao (2023), Wei and Green (2023)

Also related to information design under non-probabilistic uncertainty:

- Dworczak and Pavan (2022), Hu and Weng (2021), Kosterina (2022), Sapiro-Gheiler (2021)

The robustly optimal information provision policy features similarities to

- robust contracting (e.g., Carroll and Meng, 2016), and
- information design contests (e.g., Boleslavsky and Cotton, 2015, 2018; Au and Whitmeyer, 2023)


## Information as Experiment

Seller provides information by an experiment $(S, x)$

- a signal $\sigma$ realizes according to $\chi(x)$ when the match value is $x \in\{0,1\}$
- Buyer updates using Bayes rule, and gets a posterior $\mathbb{P}(x=1 \mid \sigma)$
- the law of iterated expectation requires $\mathbb{E}[\mathbb{P}(x=1 \mid \sigma)]=\mathbb{P}(x=1)=\mu$
- "merging" all signals that leads to the same posterior $w: \mathbb{E}_{H}[w]=\mu$
- conversely, for any given $H$ with $\mathbb{E}_{H}[w]=\mu$, let $S=\operatorname{supp}(H)$ and

$$
p_{1}(\sigma)=h(\sigma) \sigma / \mu, \quad \text { and } \quad p_{0}(\sigma)=h(\sigma)(1-\sigma) /(1-\mu),
$$

for all $\sigma \in S$, where $p_{x}$ and $h$ are the "generalized pdf" of $\chi(x)$ and $H$, respectively

## Details about $z=\min \{a, v\}$

Recall that $a=\mathbb{E}[\max \{a, v\}]-s$

1. The mean of $z$ is

$$
\mathbb{E}[z]=\mathbb{E}[\min \{a, v\}]=\mathbb{E}[a+v-\max \{a, v\}]=\mathbb{E}[\mathbb{E}[\max \{a, v\}]-s+v-\max \{a, v\}]=\mathbb{E}[v]-s=\xi-s
$$

2. In search problems, a decision maker prefers a more dispersed distribution

- the most dispersed distribution is the binary distribution with support on $\{0,1\}$; denote its $\operatorname{CDF}$ by $G_{B}$
- now by definition of $a$,

$$
s=\mathbb{E}_{G_{B}}[\max [a, v]]-a=\xi \max [a, 1\}+(1-\xi) \max \{a, 0\}-a=\xi(1-a),
$$

and hence the largest $a$ is $1-s / \xi$

- therefore, $z \in[0,1-s / \xi]$


## More on Buyer Search

- Observe that

$$
\begin{aligned}
a=\mathbb{E}_{G}[\max \{a, v\}]-s & \Leftrightarrow s=\int_{0}^{a} a \mathrm{~d} G(v)+\int_{a}^{1} v \mathrm{~d} G(v)-a \\
& \Leftrightarrow s=\int_{0}^{a} a \mathrm{~d} G(v)+\int_{a}^{1} v \mathrm{~d} G(v)-\int_{0}^{1} a \mathrm{~d} G(v) \\
& \Leftrightarrow s=\int_{a}^{1}(v-a) \mathrm{d} G(v)
\end{aligned}
$$

- From the last equality we see that the left-hand side is constant in $a$ and the right-hand side is strictly decreasing in a
- So if Buyer's net value is larger than $a$, she would not search


## Two-Step Approach: Technical Details

Optimal posterior value distribution for a fixed $p$ :

- Seller and Nature play a zero-sum game in which Seller chooses H and Nature chooses Ĝ:

$$
\max _{H} \min _{\hat{G}} \Phi(H, \hat{G} \mid p) \text {, where } \Phi(H, \hat{G} \mid p)=\mathbb{E}_{\hat{G}}[1-H(p+z)]
$$

- $H^{*}(p)$ is optimal if and only if there exists $\hat{G}^{*}(p)$ such that $\left(H^{*}(p), \hat{G}^{*}(p)\right)$ is a Nash equilibrium of the zero-sum game
- equivalently, $\left(H^{*}(p), \hat{G}^{*}(p)\right)$ is a saddle point: for all feasible $H$ and $\hat{G}$,

$$
\Phi\left(H, \hat{G}^{*}(p) \mid p\right) \leq \Phi\left(H^{*}(p), \hat{G}^{*}(p) \mid p\right) \leq \Phi\left(H^{*}(p), \hat{G} \mid p\right)
$$

- it then remains to verify that there exists an outside option distribution $G$ that induces $\hat{G}$

Solve for optimal $p: \max _{p \in[0,1]} p \Phi^{*}(p)$, where $\Phi^{*}(p)=\Phi\left(H^{*}(p), \hat{G}^{*}(p) \mid p\right)$

## Finding the Saddle Point I

Observing Seller's choice of $(p, H)$, Nature's problem can be written as

$$
\max _{\hat{G} \in M(\xi-s)} \int_{0}^{1-\frac{s}{\xi}} H(p+z) d \hat{G}(z)
$$

where $M(\xi-s)$ is the set of distributions with support on $[0,1-s / \xi]$ whose mean is $\xi-s$
Taking $p$ as given, Seller's problem can be written as

$$
\max _{H \in M(\mu)} \int_{0}^{1} G_{p}(w) \mathrm{d} H(w)
$$

where

$$
G_{p}(w)= \begin{cases}0 & \text { if } w<p \\ \hat{G}(w-p) & \text { if } w \geq p\end{cases}
$$

## Finding the Saddle Point II

## Lemma

For a fixed $p,\left(H^{*}, \hat{G}^{*}\right)$ is a saddle point if and only if

$$
H^{*} \in \underset{H \in M(\mu)}{\arg \max } \int_{0}^{1} G_{p}^{*}(w) \mathrm{d} H(w), \quad \text { and } \quad \hat{G}^{*} \in \underset{\hat{G} \in M(\xi-s)}{\arg \max } \int_{0}^{1-\frac{s}{\xi}} H^{*}(p+z) \mathrm{d} \hat{G}(z)
$$

where

$$
G_{p}^{*}(w)= \begin{cases}0 & \text { if } w<p \\ \hat{G}^{*}(w-p) & \text { if } w \geq p\end{cases}
$$

Kamenica and Gentzkow (2011): Seller's and Nature's values are $\tilde{G}_{p}^{*}(\mu)$ and $\tilde{H}^{*}(p+\xi-s)$, respectively

- for a function $f, \tilde{f}$ denotes its concave hull

In equilibrium, Seller make $\tilde{H}^{*}(p+\cdot)$ linear on $[0,1-s / \xi]$ and Nature make $\tilde{G}_{p}^{*}$ linear on $[0,1]$

- both parties are indifferent between spreading and contracting mass


## The Virtue of Linearity: An Alternative Illustration

What happens if $H$ is not linear? Observing $(p, H)$, Nature maximizes $\mathbb{E}_{\hat{G}}[H(p+z)]$



## Mass Point at the Top: Details

Seller's problem: $\max _{(p, H)} \min _{\hat{G}} p \mathbb{E}_{\hat{G}}[1-H(p+z)] \Longrightarrow$ Nature maximizes: $\mathbb{E}_{\hat{G}}[H(p+z)]$
What if there is a mass point in $H$ at $y<p+1-s / \xi$ ? Not robust to Nature's choice.


## Why H May Take Value at $w=1 ?$

Why the supremum of $\operatorname{supp}(H)$ is 1 for any optimal $H$ ?


Suppose not, then it is profitable to jointly increase the price ( $p^{\prime}$ to $p^{\prime \prime}$ ) and increase the likelihood of high posterior values ( $H_{p^{\prime}}$ to $H_{p^{\prime \prime}}$ )

## More Details



- Cutoffs in search cost $B_{1}(\xi), B_{2}(\xi)$, and $B_{3}(\xi)$ are hump-shaped
- No information is never optimal: the price is too low


## Information Comparative Statics: Details

"more informative as search cost increases" $\Leftrightarrow H_{s_{2}}$ is a mean-preserving spread of $H_{s_{1}}$ if $s_{1}<s_{2}$


## Zero Search Cost

## Proposition

Suppose $s=0$. Uniform information is always optimal, and the robust price is $p_{0}:=\lim _{s \searrow 0} p_{r}$.

When search frictions are absent,

- the trade-off between search deterrence and surplus extraction disappears, and
- Seller's hedging motive renders uniform information optimal.


## Known Outside Option Distribution

Now suppose Seller knows the outside option distribution $G$

- assume that $G$ has full support, and admits a log-concave density $g$


## Proposition

The optimal selling strategy provides full information, and the optimal price is

$$
p^{o}= \begin{cases}1-a & \text { if } 1-a \geq p_{h} G\left(1-p_{h}\right), \\ p_{h} & \text { if } 1-a<p_{h} G\left(1-p_{h}\right),\end{cases}
$$

where $p_{h}$ solves

$$
p=\frac{G(1-p)}{g(1-p)} .
$$

Intuition: the absence of hedging motive makes maximally differentiating the product optimal

## Known Outside Option Distribution

## Corollary

For every outside option distribution $G$, there exists $\hat{s}_{G} \in(0, \xi)$ such that $p^{0}=p_{h}$ for every $s<\hat{s}_{G}$, and $p^{0}=1-a$ for every $s \geq \hat{s}_{G}$. Furthermore, at $s=\hat{s}_{G}$, the optimal price drops from $p_{h}$ to $1-a\left(\hat{s}_{G}\right)$.

Compared to the main model:

- the main trade-off (search deterrence vs surplus extraction) and some interesting features (e.g., nonmonotonicity of price) remain
- less uncertainty $\Longrightarrow$ more precise information provision
- does not generate as clear-cut implications for new products


## Recognizable Buyer Identity

Suppose now Seller can recognize whether Buyer is a first-time visitor or came back from search

- One way that Seller can take advantage of this is to make an exploding offer: she commits not to sell to Buyer if she does not buy in her first visit
- Another possibility is that Seller commits to a price path: if Buyer comes back to buy she has to pay a higher price


## Recognizable Buyer Identity I: Exploding Offers

## Proposition

Suppose that Seller can recognize whether Buyer is a first-time visitor. Then
(i) if Seller can commit to an exploding offer, it is optimal to offer $p=1-\xi+s$ with full information;
(ii) for all $\mu, \xi \in(0,1)$ and $0 \leq s<\xi$, Seller earns strictly higher profits than the case that she cannot distinguish between first-time visitors and searchers.
(iii) if Seller cannot commit to the price, and there is a cost of returning to Seller $r>0$, then the equilibrium outcome is the same as Seller committing to exploding offers.

Intuition:

- exploding offer is outcome equivalent to that the outside option distribution is $\delta_{\xi}$
- full information is optimal because it creates the highest total surplus, and Seller can appropriate all the surplus


## Recognizable Buyer Identity II: Price Discrimination

Suppose now that while the information provision policy cannot be changed, Seller can commit to a price path ( $p_{1}, p_{2}$ ) with $p_{1}<p_{2}$

- $p_{1}$ and $p_{2}$ are the prices charged if Buyer buys immediately or after search, respectively


## Proposition

Suppose that Seller can recognize whether Buyer is a first-time visitor. Let $\left(p_{r}, H^{*}\right)$ be a robustly optimal selling strategy, and let $G^{*}$ be the corresponding worst-case outside option distribution. If Seller deviates by committing to a pair of prices ( $p_{1}, p_{2}$ ), where either $p_{1}=p_{r}$ or $p_{2}=p_{r}$, then
(i) If Nature cannot detect this deviation and hence the outside option distribution is still $G^{*}$, Seller can benefit from such a deviation unless $\mathrm{H}^{*}$ corresponds to full information;
(ii) If Nature can detect this deviation and optimally responds to it by choosing a new outside option distribution, Seller cannot benefit from such a deviation.

