Costly Evidence and Discretionary Disclosure

Mark Whitmeyer Kun Zhang Arizona State Queensland In communication games, a (privately) informed sender communicates to an uninformed receiver by sending a message, following which the receiver takes an action

- Often, the sender's private information is obtained through costly acquisition
- More and finer information is generally more costly to acquire

We study a disclosure game in which information is endogenously and costly acquired

- E.g., the sender manages an asset and the receiver is a collection of market traders
- We follow Verrecchia (1983) and assume that disclosure is costly
 - ▶ the main insights persist if there is instead random failure à la Dye (1985)

Questions:

- what is the impact of transparency in the sender's information acquisition strategy?
- what is the role of the disclosure cost given that the information is endogenous?

Main Findings:

- transparency in the acquisition process does not help, and may hurt, the receiver
- under endogenous info, the receiver may prefer a strictly positive disclosure cost
 - this is never the case where information is exogenous

The Model

Model Basics

- Two players, sender (S; he) and receiver (R; she)
- Unknown state $\theta \in [0, 1]$, common prior with cdf *F*, density f > 0, and mean μ
- *R*'s set of actions is A = [0, 1] and her utility is the commonly-used quadratic loss:

$$u_R(a,\theta)=-\left(a-\theta\right)^2$$

- S's utility is state-independent and only depends on in R's action: $u_s(a, \theta) = v(a)$; assume v is strictly increasing
- S first acquires information then sends a message to R (more on messages shortly)
- Upon observing a message, R updates her beliefs and takes an action

Information Acquisition

- The quadratic loss utility of *R* means that *R*'s uniquely optimal action at any posterior distribution is the posterior mean $x \in [0, 1]$; that is, $a^* = x$
- Since S only cares about R's action, only x is relevant for him: $v_s(x) := v(a^*) = v(x)$
- S's info acquisition strategy is summarized by a distribution of posterior means G
 - Blackwell (1951) indicates that G is feasible if and only if it is a mean-preserving contraction (MPC) of the prior F; denote the set of feasible distributions by MPC(F)
- Assume that the cost of acquiring any $G \in MPC(F)$ is "posterior mean measurable:"

$$C(G) = \kappa \int_0^1 c(x) \, \mathrm{d}G(x)$$

- c is strictly convex, reflecting the idea that more precise information is costlier
- \triangleright κ > 0 is a scaling parameter: the "marginal cost" of acquiring information
- S's net value function is $w(x) := v(x) \kappa c(x)$; w is either str. convex or str. concave

We are interested in the effects of transparency and hence look at two different cases:

- 1. Covert Acquisition: R does not observe G and G cannot be certified.
- 2. Overt Acquisition: *R* observes *G*.

Overt acquisition is "more transparent" than covert acquisition: *R* observes *S*'s information gathering activities, no matter whether *S* discloses the outcome.

- if posterior mean x realizes, S can choose whether to disclose it.
- Disclosure of x incurs a cost $\gamma \in (0, 1 \mu)$
 - one can think of S needs to pay a cost to certify that the posterior mean is x.
- S cannot lie but can choose not to disclose, which is costless.
 - in this case he sends message m_{α} , can be interpreted as declining to get certified.

Timeline:

- 1. S acquires information by choosing a distribution of posterior means $G \in MPC(F)$.
- 2. S observes the realization x from G then chooses to
 - either disclose x and incur cost γ (in which case he sends message x); or
 - not disclose (sends message m_{ϕ}) and incur no cost.
- 3. *R* observes *S*'s message, and also *G* if acquisition is overt.
- 4. *R* takes action *a* and payoffs accrue.

Analysis

Suppose S privately knows the state θ (and there is no information acquisition stage).

Proposition (Verrecchia, 1983). An equilibrium exists. In any equilibrium, there exists $\underline{\theta} \in (0, 1]$ s.t. S doesn't disclose when $\theta \in [0, \underline{\theta}]$ and discloses otherwise.

- Suppose $\gamma = 0$, then since v(x) is strictly increasing, in every equilibrium, S discloses in every state ("unraveling" à la Grossman, 1981; Milgrom, 1981).
- For $\gamma > 0$, lowest types prefer not to disclose: the gain doesn't justify the cost. Details

Covert Information Acquisition

Claim. A covert-information-acquisition equilibrium exists.

• For any conjectured posterior mean following no disclosure, $\alpha \in [0, \mu]$, S's payoff as a function of the realized posterior mean x is

$$V_{\alpha}(x) = \begin{cases} v(\alpha) - \kappa c(x), & \text{if } v(x) - \gamma < v(\alpha), \\ v(x) - \gamma - \kappa c(x), & \text{if } v(x) - \gamma \ge v(\alpha). \end{cases}$$

• In his information acquisition problem, S chooses a distribution G_{α} that solves

$$\max_{G\in MPC(F)}\int V_{\alpha}(x)\,\mathrm{d}G(x).$$

• We show that there exists an *α* such that *R*'s conjecture of the posterior mean is indeed *α* upon observing non-disclosure.

Proposition. Suppose information acquisition is covert.

- 1. If w is strictly convex, the equilibrium is unique. There is a threshold $z_c \le 1$ such that all values $x \in [0, z_c]$ are pooled and subsequently not disclosed, and the sender acquires full information and discloses on $(z_c, 1]$.
- 2. If *w* is strictly concave, in any equilibrium the distribution of posterior means acquired by the sender, *G*, has support on at most two points.

Covert Acquisition: Illustration

Proposition. Suppose information acquisition is overt.

llustration

- 1. If w is strictly convex, in every equilibrium there is a threshold $z_0 \le 1$ such that all values $x \in [0, z_0]$ are pooled and subsequently not disclosed, and the sender acquires full information and discloses on $(z_0, 1]$.
- 2. If *w* is strictly concave, in the unique equilibrium *S* does not acquire any information and does not disclose either.

Observation. If *w* is str. concave, *R* obtains more info under covert info acquisition.

Proposition. If w is str. convex, unless no information acquisition in the covert equilibrium, $z_0 > z_c$. Thus, R obtains more info under covert info acquisition.

Transparency reduces *R* skepticism following nondisclosure

• The effect works at both the intensive margin and the extensive margin

Proposition. In the exogenous info benchmark, *R* obtains less info as *y* increases.

Proposition. When information acquisition is either overt, or it is covert but w is strictly convex, R obtains less information as γ increases.

Observation. Suppose information acquisition is covert and *w* is strictly concave. If disclosure is costless ($\gamma = 0$), but information acquisition is costly ($\kappa > 0$), the unique equilibrium is that in which *S* acquires no information but gets it certified.

Proposition. When info acquisition is covert and *w* is strictly concave, *R* prefers a strictly positive disclosure cost to no disclosure cost.

Summary

We study a disclosure game with endogenous information where

- more and finer information is more costly to acquire
- disclosure requires costly certification (or certification subject to random failure)

Main takeaways:

- transparency in the acquisition process does not help, and may hurt, the receiver
- the receiver may prefer a strictly positive certification cost to zero certification cost

Other results:

• comparative statics on net value function w getting more (or less) convex

Thank you!

mark.whitmeyer@gmail.com kun@kunzhang.org

Backup Slides

1

Exogenous S Information Benchmark: Details

Suppose S knows the state θ and hence doesn't need to acquire any information.

Proposition (Verrecchia, 1983). An equilibrium exists. In any equilibrium, there exists $\theta \in (0, 1]$ s.t. S doesn't disclose when $\theta \in [0, \theta]$ and discloses otherwise.

- An eqm is characterized by $\underline{\theta}$ satisfying $\mathbb{E}\left[v(\theta) \mid \theta \in [0, \underline{\theta}]\right] = v(\underline{\theta}) \gamma$ (or \geq if $\underline{\theta} = 1$).
- By Tarski's fixed point theorem, either \geq holds for $\theta = 1$ or there is θ s.t. = holds.

Overt Acquisition: Illustration

