Buying Opinions

Mark Whitmeyer and Kun Zhang (Arizona State) July 19, 2022

Stony Brook International Conference on Game Theory

Introduction

- In many situations, decision makers pay for advice (soft information).
 - examples: sport scouts/headhunters and consulting firms
- A bilateral contracting scenario: principal (*P*) pays for an agent's (*A*'s) advice.
 - To advise *P*, *A* needs to acquire information first.
- Key features:
 - *A*'s information acquisition is flexible, costly and private.
 - *A*'s findings are **unverifiable**: after acquiring information, *A* sends a cheap-talk message.
 - *P* can condition contract on *A*'s message and state.
 - *A* can take the outside option both before participating (*ex ante*) and after acquiring information (interim).
- Standard moral hazard decomposition:
 - 1. how to efficiently implement an information acquisition strategy
 - 2. what strategy to implement

- *P* can implement any feasible information acquisition strategy.
- A's optimal learning pins down the relative incentives (our version of IC).
- When *A* is risk neutral and no limited liability, any information acquisition strategy can be implemented at first-best cost.
 - Selling the project to the agent does not work!
- Characterization of optimal implementation:
 - limited liability and risk-neutral *A*: first-best implementation for sufficiently uninformative learning or sufficiently cheap information. Rents for *A* if first-best infeasible.
 - No limited liability and risk-averse A: first-best infeasible. Rents for A (generically). (Not today)

The Model

Model

- P (she) hires A (he) to learn about a payoff-relevant state
 - $\theta \in \Theta = \{\theta_1, \dots, \theta_n\}$ with $n < \infty$
- *P* and *A* share common (WLOG, full support) prior $\mu \in \Delta(\Theta)$
- A can acquire information, flexibly, subject to a cost:
 - A chooses any Bayes-plausible $F \in \Delta\Delta(\Theta)$ and incurs $C(F) = \kappa \int_{\Delta(\Theta)} c \, dF$
 - $\kappa > 0$ scales the cost
 - $c: \Delta(\Theta) \rightarrow \mathbb{R}_+$ is strictly convex, 2x differentiable, bounded on int $\Delta(\Theta)$, and $c(\mu) = 0$
 - Class includes entropy (Sims 2003), log-likelihood (Pomatto, Strack and Tamuz 2020), and quadratic (Tsallis 1988)

- After acquiring information, A sends a message to P
- True state is *ex post* observable and contractible
- Contract is a pair (M, t):
 - A compact set of messages *M* available to the agent, and
 - A transfer $t: M \times \Theta \to \mathbb{R}$ $(t: M \times \Theta \to \mathbb{R}_+$ if limited liability)
- This talk: A risk neutral; also consider risk averse agent in the paper
- A has outside option $v_0 \ge 0$
 - A can take this after (M, t) is proposed or after acquiring information

The Contracting Problem

- Write *P*'s gross payoff as a function of the posterior $\mathbf{x} = (x^1, \dots, x^{n-1}), V(\mathbf{x})$
- Denote the set of Bayes-plausible distributions over posteriors by $\mathcal{F}(\mu)$
 - $\mathcal{F}(\mu)$ is a convex and compact subset of $\Delta\Delta(\Theta)$
- If the principal controlled the information acquisition herself, she would solve

$$\max_{F\in\mathcal{F}(\mu)}\int (V-\kappa c) dF.$$

- First-best: *P* can observe *A*'s choice of *F* and specify transfer $t: \Delta\Delta(\Theta) \to \mathbb{R}_+$
 - Cost of acquiring information is $v_0 + C(F)$

- WLOG for any distribution *P* wants to implement, *M* is the support of the distribution
- A contract (M, t) induces a decision problem (μ, M, t) of the agent
 - *M* is the set of actions, *t* is the (state-dependent) utility function
 - in the decision problem, the agent acquires information and subsequently sends a message
- A distribution *F* is **implementable** if there exists a contract (*M*, *t*) such that
 - 1. $M = \operatorname{supp}(F)$, and
 - 2. it is optimal for the agent to acquire F and report the realized posterior truthfully

The Agent's Decision Problem

- A chooses a distribution over posteriors to maximize her value function W(x) Details
- *A*'s optimal distribution is given by concavifying *W*: affine function $f_{\mathcal{H}}(\mathbf{x}) : \Delta(\Theta) \to \mathbb{R}$ intersects *W* at support of the distribution; expected payoff in the contract $f_{\mathcal{H}}(\mu)$
- Set of intersection points of $f_{\mathcal{H}}$ and W is $P_{(M,t)} \Rightarrow F$ can be implemented by (M, t) only if supp $(F) = P_{(M,t)}$
- The contract must also prevent A from walking away at any point in the interaction
- No double deviations (learn differently and walk away at some belief):

$$f_{\mathcal{H}}(\mathbf{x}) \ge v_0 - \kappa c(\mathbf{x}) \quad \text{for all} \quad \mathbf{x} \in \Delta(\Theta) .$$
 (*IR*)

• If A cannot walk away after acquiring information, IR is just $f_{\mathcal{H}}(\mu) \ge v_0$

Illustration

Illustration

Lemma A contract (M, t) implements a distribution F if and only if

- 1. $supp(F) = P_{(M,t)};$ and
- 2. Constraint IR holds; and

3. If there is limited liability, $t(m, \theta) \ge 0$ for all $\theta \in \Theta$ and $m \in M$.

Results

Lemma If *F* is a distribution over posteriors with $|\text{supp}(F)| \le n$ and $\text{supp}(F) \subseteq \text{int} \Delta(\Theta)$, there exists a contract (M, t) that implements *F*, and the expected cost to the principal is finite.

Corollary

(1) Every $F \in \mathcal{F}(\mu)$ with supp $(F) \subseteq int \Delta(\Theta)$ can be induced at a finite cost.

(2) WLOG, *P* only induces distributions with support on at most *n* points.

- Any distribution $F \in \mathcal{F}(\mu)$ can be obtained by randomizing over distributions $F_i \in \mathcal{F}(\mu)$ each with support on *n* or fewer points
- If *P* randomize first, then implement each F_i as cheaply as possible, same payoff to *P* gross of cost, but weakly cheaper
- Henceforth focus on distributions with $|supp(F)| \le n$

- For each state k = 1, ..., n, define $\Omega^k(i, j) := t_i^k t_j^k$ (i, j = 1, ..., s).
- Each Ω^k (i, j) specifies the difference between the payoff to the agent from sending any message i versus message j in state k.

Proposition For an agent to learn according to a desired distribution *F*, the relative incentives $(\Omega^{k}(i,j))_{i,j=1,\dots,s;k=1,\dots,n}$ are pinned down.

• For each state k, P fixes benchmark message j(k), then chooses $\left(t_{j(k)}^{k}\right)_{k=1}^{n}$; the payoff to A from sending message j(k) in state k

- Efficient (first-best) implementation requires $f_{\mathcal{H}}(\mu) = v_0$
- Thus, Constraint IR $(f_{\mathcal{H}}(\mathbf{x}) \ge v_0 \kappa c(\mathbf{x})$ for all \mathbf{x}) must bind at $\mathbf{x} = \mu$
- Selling the project to the agent?

Illustration: Optimal Contract without Limited Liability

Illustration: Optimal Contract without Limited Liability

Illustration: Optimal Contract without Limited Liability

No Limited Liability

- No interim IR \Rightarrow selling the project works. Key thing: $f_{\mathcal{H}}(\mu) = v_0$
- Interim IR \Rightarrow selling the project doesn't work generically: now need $f_{\mathcal{H}}$ tangent to $v_0 \kappa c$ at μ

Proposition If *A* is risk neutral and not protected by limited liability, every feasible *F* with supp(*F*) \subseteq int $\Delta(\Theta)$ can be implemented efficiently.

- Not a shoot the agent contract: Penalties may be mild
- If either (i) v_0 is sufficiently large, or (ii) implemented distribution sufficiently low in Blackwell order, or (iii) κ is sufficiently small, our construction works under limited liability

Limited Liability (2 States)

To ease exposition, assume $\Theta = \{\theta_1, \theta_2\}.$

Proposition Either

- 1. $\{x_1, x_2\}$ can be implemented efficiently (and Constraint *IR* binds); or
- 2. $\{x_1, x_2\}$ cannot be implemented efficiently; and either
 - 2.1 Constraint *IR* binds and the $t_2^1 = 0$; or
 - 2.2 Constraint *IR* binds and $t_1^2 = 0$; or

2.3 Constraint *IR* does not bind and $t_2^1 = t_1^2 = 0$.

• If {*x*₁, *x*₂} is in the region corresponding to 2.3, same result holds even when *A* is risk averse

Entropy Reduction Cost: An Example

Moderate outside option (or moderate cost of info. acqui.), $\mu = 0.5$

Entropy Reduction Cost: An Example

Low outside option (or expensive information), $\mu = 0.5$

Entropy Reduction Cost: An Example

High outside option (or cheap information), $\mu = 0.5$

Related Work

- Rappoport and Somma (2017): posteriors are contractible.
 - Hard (them) versus soft (us) information.
- Yoder (Forthcoming): posteriors are contractible, agent's marginal cost of information (κ) is private information.
 - Screening is now important;
 - Contracting on experiment versus posteriors.
- Zermeño (2011), Clark and Reggiani (2021): decision-making delegated to the agent;
 - Can payoffs depend on true state?
 - Decomposition of Pareto optimal contracts.

Thank you!

mark.whitmeyer@gmail.com kunzhang@asu.edu

• For any $m \in M$, define A's net utility N(x | m):

$$N(\mathbf{x} \mid m) = \sum_{i=1}^{n-1} x^{i} t(m, \theta_{i}) + \left(1 - \sum_{i=1}^{n-1} x^{i}\right) t(m, \theta_{n}) - \kappa c(\mathbf{x}) ,$$

where x^i is the *i*-th entry of $\mathbf{x} = (x^1, \dots, x^n)$.

• The agent's value function is thus $W(\mathbf{x}) = \max_{m \in M} N(\mathbf{x} \mid m)$.

- With interim IR, problem reduces to picking a point, x^* , on $v_0 \kappa c(x)$ where $f_{\mathcal{H}}(x)$ is tangent
- Generically $x^* \neq \mu \Rightarrow$ Agent gets rents
 - Without interim IR, Agent gets no rents
- Efficient implementation is impossible (unless $F = \delta_{\mu}$)