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Abstract

This paper studies a game in which an informed sender with state-independent

preferences uses verifiable messages to convince a receiver to choose an action

from a finite set. We characterize the equilibrium outcomes of the game and

compare them with commitment outcomes in information design. We provide

conditions for a commitment outcome to be an equilibrium outcome and identify

environments in which the sender does not benefit from commitment power. Our

findings offer insights into the interchangeability of verifiability and commitment

in applied settings.
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1. Introduction

Persuasion with verifiable information plays an essential role in many economic settings,

including courtrooms, electoral campaigns, product advertising, financial disclosure,

and job market signaling. For example, in a courtroom, a prosecutor tries to persuade

a judge to convict a defendant by selectively presenting inculpatory evidence. In an

electoral campaign, a politician carefully chooses which campaign promises he can cred-

ibly make to win over voters. In advertising, a firm convinces consumers to purchase

its product by highlighting only specific product characteristics. In finance, a CEO

discloses only certain financial statements and indicators to board members to obtain

higher compensation. In a labor market, a job candidate lists specific certifications to

make her application more attractive to an employer.

We consider the following model of persuasion with verifiable information. First,

the sender (S, he/him) learns the state of the world. Second, the sender chooses a

message, which is a verifiable statement about the state of the world, and sends it to

the receiver (R, she/her). Verifiability means that any feasible message must contain

the truth (the true state of the world), but not necessarily the whole truth, as it may

include other states. Upon observing the message, R takes an action from a finite set.

S’s preferences are state-independent and strictly increasing in R’s action, while R’s

preferences depend on both her action and the state.

Seminal papers in this literature (e.g., Grossman, 1981, Milgrom, 1981) establish an

“unraveling” result, which states that S fully reveals the state in every equilibrium. In

these papers, S’s preferences are strictly monotone in R’s action (e.g., he is maximizing

quantity sold) and R’s action space is rich (e.g., she is choosing a perfectly divisible

quantity to buy). The argument goes as follows: the sender who is privately informed

about the quality of his product always wants to separate himself from all lower-quality

senders, as that convinces R to purchase a strictly higher quantity of the product.

We note that if R’s action space is finite, S may not fully reveal the state in every

equilibrium. This is easiest to see when R’s action space is binary, such as when she is

choosing between buying and not buying. Then the high-quality senders may not mind

pooling with some lower-quality senders, as long as R chooses to buy.

Our first result characterizes (perfect Bayesian) equilibrium outcomes, which we

define as mappings from the state space to a distribution over R’s actions. In Theo-

rem 1, we show that every equilibrium outcome must be incentive-compatible (for S,

IC for short) and obedient (for R). We say that an outcome is IC if S receives at least

his complete information payoff in each state; otherwise, he would have a profitable

deviation toward fully revealing the state. Obedience requires that if R takes an action

with positive probability in some states, it must maximize her expected utility. The
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second part of Theorem 1 adds that if an outcome is deterministic, IC, and obedient,

then it is an equilibrium outcome. A deterministic outcome is one in which R takes

some action with probability one in every state. Although not all equilibrium outcomes

are deterministic, we show in Lemma 1 that all equilibria in which R does not mix (e.g.,

if R uses a predetermined tie-breaking rule) induce deterministic outcomes.

In our model, the sender does not have commitment power: he learns the state

and then chooses a verifiable message that maximizes his expected payoff in that state.

Our second goal is to understand when S can achieve the same payoff in equilibrium

as he does in information design (e.g., Kamenica and Gentzkow, 2011). In information

design, S commits to a disclosure strategy before learning the state; a commitment out-

come is an obedient outcome that maximizes the sender’s ex-ante utility. Our second

main result (Theorem 2) states that the commitment payoff is achievable in equilibrium

if and only if there exists a deterministic and IC commitment outcome. The intuitive

reason that IC but non-deterministic commitment outcomes are generally not equilib-

rium outcomes is that R typically breaks ties in favor of the S-preferred action in a

commitment outcome. However, as we mentioned earlier, all equilibria in which R does

not mix induce deterministic outcomes.

The question then becomes: when does a deterministic commitment outcome ex-

ist? Our answer is “always” if the state space is rich (Proposition 2). When the state

space is finite, however, it can be that all commitment outcomes are non-deterministic

(e.g., in the seminal example of Kamenica and Gentzkow, 2011). We show that mod-

ifying our game to one in which the set of available verifiable messages is determined

stochastically allows us to implement any IC commitment outcome (see Section 5). The

second difference between equilibrium and commitment outcomes is that S faces addi-

tional incentive-compatibility concerns when he does not have commitment power. Our

second main result states that a (deterministic) commitment outcome is an equilibrium

outcome if and only if S obtains at least his complete-information payoff in every state.

Throughout the paper, we consider a special case of the model in which R chooses

between two actions, a setting commonly used in applications.1 In that special case,

an incentive-compatible commitment outcome always exists (Proposition 1). We thus

show that verifiability and commitment assumptions are interchangeable when the state

space is sufficiently rich (Propositions 3 and 4).

1See, for example, Kolotilin (2015), where pharmaceutical companies persuade the Food and Drug
Administration to approve drugs; Ostrovsky and Schwarz (2010) and Boleslavsky and Cotton (2015)
where schools persuade employers to hire their graduates; Alonso and Câmara (2016) and Bardhi and
Guo (2018) where politicians persuade voters; Gehlbach and Sonin (2014) where governments persuade
citizens.
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Related Literature

The literature on verifiable disclosure (games in which the sender learns the state and

then chooses a message out of a state-dependent message space) was pioneered by

Grossman and Hart (1980), Grossman (1981), and Milgrom (1981); this paper uses the

same mapping from states to available messages as in Milgrom and Roberts (1986),

except in Section 5.2

A few recent papers also characterize the equilibrium set (or the set of equilibrium

payoffs of the sender) and assess the value of commitment in various verifiable disclo-

sure models. Zhang (2022) focuses on a special case of our model, further assuming

that the state space is a unit interval, the receiver has monotone preferences and her

optimal action only depends on the expected state; under these assumptions, the in-

formation design problem is known to have a bi-pooling solution, which always induces

a deterministic commitment outcome. Zhang (2022) provides conditions under which

that solution is implementable in equilibrium. Ali, Kleiner, and Zhang (2024) focus on

settings where the sender favors uncertainty: his preferences are state-dependent and

deviations to full revelation are never profitable. They provide conditions under which

the sets of equilibrium payoffs of the sender are virtually the same in the disclosure game

as in information design. Gieczewski and Titova (2024) consider a generalized disclosure

game with an arbitrary message mapping and focus on coalition-proof equilibria.

Outside of verifiable disclosure models, our paper also relates to the informed in-

formation design (IID) literature, pioneered by Perez-Richet (2014), especially Koessler

and Skreta (2023; KS henceforth) and Zapechelnyuk (2023; Z henceforth). In IID, the

sender chooses a Blackwell experiment like in information design, except he observes

the state of the world before making the choice. Therefore, an IID sender faces addi-

tional incentive-compatibility constraints relative to (uninformed) information design,

much like in verifiable disclosure. The key difference between IID and disclosure games

is that the sender can use stochastic evidence in IID, while his evidence in verifiable

disclosure is deterministic. Thus, the differences in equilibrium sets between IID and

our model highlight the value of stochastic evidence.3 In unconstrained IID (KS), an

2For detailed surveys of this literature, see, for example, Milgrom (2008) and Dranove and Jin (2010).

3Equilibrium concepts differ across all aforementioned papers; for a direct comparison of our results
to KS and Z, we will use perfect Bayesian equilibrium (PBE) with the refinement of the principle
of preeminence of tests (PPT), which requires that “every out-of-equilibrium posterior belief must
assign probability one to each event that is revealed as certain by the test” (Z, page 1061). PPT rules
out non-IC PBE because R learns the state when S sends a fully informative experiment, and that
deviation must be unprofitable. Note that PBE without refinements has no predictive power in IID,
meaning that every obedient outcome is a PBE outcome (KS, page 3197).
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obedient outcome is an equilibrium outcome if and only if it is incentive-compatible.4

In IID constrained to non-degenerate experiments (Z), every obedient outcome is an

equilibrium outcome. We show that in Milgrom-Roberts verifiable disclosure, an obe-

dient outcome is an equilibrium outcome if and only if it is incentive-compatible and

deterministic (further assuming that the receiver uses a pure strategy as in KS and Z).

Thus, the sender values stochastic evidence when the state space is finite but not when

it is rich. An IID problem can also be interpreted as a verifiable disclosure game with

random certification (where the randomization between messages is done by a machine,

not the sender).5 We formalize this observation in Section 5 by introducing a verifiable

disclosure game with a stochastic message mapping and showing that its equilibrium set

is the same as in unconstrained IID. We describe the relationship between our results

and KS in more detail throughout the paper.

While we study when the sender does not benefit from commitment power, a

growing literature examines how much the receiver gains from having commitment

power by comparing equilibrium outcomes with those of optimal mechanisms in sender-

receiver games with verifiable information. When the sender’s preferences are state-

independent, Glazer and Rubinstein (2004, 2006) and Sher (2011) find that the receiver

does not need commitment to reach the optimal mechanism outcome. Hart, Kremer,

and Perry (2017) and Ben-Porath, Dekel, and Lipman (2019) provide conditions for the

equivalence of the equilibrium and optimal mechanism outcomes.

Chakraborty and Harbaugh (2010), Lipnowski and Ravid (2020), and Lipnowski

(2020) study cheap-talk games with state-independent preferences of the sender; the

latter two compare equilibrium outcomes in one-shot cheap-talk games with commit-

ment outcomes. In cheap-talk games, the sender’s messages are not verifiable: in every

state, the sender has access to the same (sufficiently rich) set of messages. The ver-

ifiability requirement faced by our sender significantly impacts the set of equilibrium

outcomes.6 Kamenica and Lin (2024) show that in generic cheap-talk games, the com-

mitment payoff is achieved in an equilibrium if and only if there exists a deterministic

commitment outcome; our Theorem 2 provides a similar result for verifiable disclosure

games.

4KS focuses on interim optimal (IO) outcomes, which are PBE outcomes with a restriction on R’s
off-path beliefs: any such belief must assign positive probability only to states in which the sender
strictly benefits from the deviation.

5We thank Frédéric Koessler for pointing this out.

6Verifiability of his messages may help or hurt the sender, depending on the preferences of the players.
In fact, every equilibrium of the verifiable information game may be ex-ante better for the sender than
every cheap-talk equilibrium, and vice versa.
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2. Model

We study a game of persuasion with verifiable information between a sender (S, he/him)

and a receiver (R, she/her). Below we describe the timing of the game along with the

assumptions:7

1. S observes the state of the world θ ∈ Θ.

The state space Θ is either finite (Θ = {1, . . . , N}, N ≥ 2) or rich (Θ is a convex

and compact subset of Rn). The state of the world is drawn from a common prior

µ0 ∈ ∆(Θ) with supp µ0 = Θ. If the state space is rich, we further assume that

the prior is atomless.

2. S sends message m ∈ M to the receiver, where M is the collection of nonempty

Borel subsets of Θ. Since each message is a subset of the state space, we interpret it

as a statement about the state of the world. The sender’s messages are verifiable

in the sense that every message must contain the truth: the set of messages

available to S in state θ ∈ Θ is {m ∈M | θ ∈ m}.8

3. R observes the message (but not the state) and takes an action from a finite set

J := {1, . . . , K} with K ≥ 2.

4. Game ends, payoffs are realized.

S’s payoff v : J → R depends only on R’s action. Without loss, we assume that

actions are ordered such that v is increasing in j ∈ J . For ease of exposition, we

further assume that v is strictly increasing.

R’s preferences are described by a bounded measurable utility function u : J×Θ →
R. We define R’s complete information action-j set as Aj := {θ ∈ Θ | u(j, θ) ≥
u(j′, θ) for all j′ ∈ J ∖ {j}} to include all the states of the world in which she

prefers to take action j under complete information.

We consider perfect Bayesian equilibria (henceforth equilibria) of this game.

Firstly, S’s strategy is a function σ : Θ → ∆0M , where ∆0M is the set of proba-

7For a topological space Y , let ∆(Y ) denote the set of Borel probability measures on Y . For γ ∈ ∆Y ,
let supp γ denote the support of γ. We say that γ ∈ ∆Y is degenerate if supp γ is a singleton, and
non-degenerate otherwise.

8We borrow from Milgrom and Roberts (1986) the definition of a verifiable message as a subset of the
state space that includes the realized state. This method satisfies normality of evidence (Bull and
Watson, 2007), which makes it consistent with both major ways of modeling hard evidence in the
literature.
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bility measures on M with a finite support.9 Secondly, R’s strategy is a function

τ : M → ∆J . Finally, R’s belief system q : M → ∆Θ describes R’s beliefs about the

state after any observed message.

Definition 1. A triple (σ, τ, q) is an equilibrium if

(i) For all θ ∈ Θ, σ(· | θ) is supported on argmax
{m∈M | θ∈m}

∑
j∈J

v(j) τ(j | m);

(ii) For all m ∈M , τ(· | m) is supported on argmax
j∈J

∫
Θ

u(j, θ) dq(θ | m);

(iii) q is obtained from µ0, given σ, using Bayes rule whenever possible;10

(iv) For all m ∈M , q(· | m) ∈ ∆m.

In words, in equilibrium, (i) S chooses verifiable messages that maximize his ex-

pected utility in every state θ ∈ Θ; (ii) R maximizes her expected utility given her

posterior belief; (iii) R uses Bayes’ rule to update her beliefs whenever possible; and

(iv) R’s posteriors are consistent with disclosure on and off the path.

To analyze the model, we use the following approach. Let Ψ be the set of all

Borel measurable functions from Θ to ∆J . We refer to any α ∈ Ψ as an outcome;

it specifies, for each state θ ∈ Θ, the probability α(j | θ) that R takes action j ∈ J .

Given a pair of strategies (σ, τ) of S and R, we let Mj(σ, τ) := {m ∈ M | m ∈
supp σ(· | θ) for some θ ∈ Θ and τ(j | m) > 0} be the set of messages that convince R

to take action j ∈ J , sent with a positive probability in some state θ ∈ Θ. We say that

α ∈ Ψ is an equilibrium outcome if there exists an equilibrium (σ, τ, q) that induces it,

meaning that α(j | θ) =
∑

m∈Mj(σ,τ)

τ(j | m)σ(m | θ) for all j ∈ J and θ ∈ Θ.

We say that an outcome α ∈ Ψ is deterministic if α(· | θ) is degenerate for each

θ ∈ Θ. For a deterministic outcome α, we refer to the collection of sets {Wj}j∈J , where
Wj := {θ ∈ Θ | α(j | θ) = 1}, as the outcome partition (into subsets Wj of the state

space in which R takes action j ∈ J with probability one) of α.

Given an outcome α, we let vα(θ) :=
∑
j∈J

v(j)α(j | θ) be S’s interim (expected)

payoff in state θ ∈ Θ and Vα :=
∫
Θ

vα(θ) dµ0(θ) be S’s ex-ante utility.

9That is, we assume that S mixes between finitely many messages. This assumption imposes no restric-
tion when Θ is finite. When Θ is rich, it guarantees that σ(· | θ) is well-defined, and the restriction
does not affect the set of achievable equilibrium payoffs.

10That is, q is a regular conditional probability system.
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3. Equilibrium Analysis

We begin by establishing the lower bound on S’s payoff in an equilibrium outcome

α. One thing that S can do in state θ is fully reveal it by sending message {θ} with

probability one. Upon receiving message {θ}, R learns that the state is θ and takes an

action that is a best response under complete information. Thus, S’s equilibrium payoff

in state θ is bounded below by v(θ) := min
j∈J s.t. θ∈Aj

v(j). We refer to this condition as

S’s incentive-compatibility constraint:11

vα(θ) ≥ v(θ). (ICθ)

Definition 2. An outcome α is incentive-compatible (IC) if it satisfies (ICθ) for each

state θ ∈ Θ.

In information design, α(j | θ) is interpreted as the probability that S recommends

action j in state θ; R’s best response is to follow the recommendation if∫
Θ

(u(j, θ)− u(j′, θ))α(j | θ) dµ0(θ) ≥ 0, for all j′ ∈ J ∖ {j}. (obediencej)

Definition 3. An outcome α is obedient if it satisfies (obediencej) for each action

j ∈ J .

Naturally, our setting does not allow for action recommendations since S’s message

space is not J . Nevertheless, we will soon show that all equilibrium outcomes must be

obedient.

If α is a deterministic outcome with partition {Wj}j∈J , then (ICθ) becomes θ ∈
Wj =⇒ v(j) ≥ v(θ) ⇐⇒ j ≥ min

i∈J s.t. θ∈Ai

i, indicating that the action taken in state

θ must be no lower than R’s worst best response under complete information. The

obedience constraint for action j simplifies to
∫
Wj

(u(j, θ) − u(j′, θ)) dµ0(θ) ≥ 0 for all

j′ ∈ J ∖ {j}.

Our first result establishes that every equilibrium outcome is incentive-compatible

and obedient. For deterministic outcomes, these two properties are necessary and suf-

ficient for equilibrium implementation.

11In fact, v(θ) is the lower bound on S’s equilibrium payoff in state θ, meaning an equilibrium exists
where S’s interim payoff is exactly v(θ) for each θ ∈ Θ. In that equilibrium, S fully reveals every
state, R takes the lowest action that is a best response under complete information, and R’s beliefs
are skeptical off-path (we define R’s skeptical beliefs in the proof of Theorem 1).
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Theorem 1.

(a) Every equilibrium outcome is IC and obedient.

(b) If a deterministic outcome is IC and obedient, then it is an equilibrium outcome.

Proof. [Part (a)] Consider an equilibrium (σ, τ, q) with outcome α ∈ Ψ. Observe that α

must be incentive-compatible, or else there exists a state θ in which S has a profitable

deviation to fully revealing the state. Next, we show that α is also obedient. Consider

any action j ∈ J . By the equilibrium condition (ii), we have

for all m ∈Mj(σ, τ) and j
′ ∈ J ∖ {j},

∫
Θ

(u(j, θ)− u(j′, θ)) dq(θ | m) ≥ 0

=⇒
∫
Θ

(u(j, θ)− u(j′, θ))τ(j | m) dq(θ | m) ≥ 0,

where the second inequality follows because τ(j | m) > 0 for all m ∈ Mj(σ, τ). Using

the Bayes rule, the above inequality implies that

for all j′ ∈ J ∖ {j},
∫
Θ

(u(j, θ)− u(j′, θ))
∑

m∈Mj(σ,τ)

τ(j | m)σ(m | θ) dµ0(θ) ≥ 0,

=⇒
∫
Θ

(u(j, θ)− u(j′, θ))α(j | θ) dµ0(θ) ≥ 0,

where the last inequality is (obediencej). Since j was chosen arbitrarily, α is obedient.

[Part (b)] Consider a deterministic outcome α that is IC and obedient and denote

its outcome partition by {Wj}j∈J . We construct an equilibrium (σ, τ, q) that induces

α. Let S’s strategy be σ(m | θ) = 1(m = Wj and θ ∈ Wj), which reveals which element

of the outcome partition the realized state belongs to. When R receives an on-path

message Wj, she learns that θ ∈ Wj and nothing else; by (obediencej), playing action

j is a best response; thus, we let τ(j | Wj) = 1 for all j ∈ J . For off-path messages,

assume R is “skeptical” and believes that any unexpected message comes from the state

in which R prefers to take the lowest action under complete information. Formally, for

all m /∈ {Wj}j∈J , let q(· | m) ∈ ∆(m ∩Aj), where j ∈ J is the lowest action i ∈ J such

that the set m∩Ai is non-empty. Then, playing action j with probability one is a best

response to message m, so we let τ(j | m) = 1.

We now show that S has no profitable deviations using the fact that {Wj}j∈J is a

partition of the state space. Consider a state θ ∈ Θ, which is in Wj for some action
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j ∈ J . S cannot send any other on path message because θ ∈ Wj implies θ /∈ Wi for

any i ̸= j, so Wi is not a verifiable message in state θ. If S deviates to an off-path

(verifiable) message m /∈ {Wj}j∈J , then S’s payoff is v(j) ≤ v(θ), and this deviation is

unprofitable by (ICθ). Therefore, (σ, τ, q) is an equilibrium that induces α.

Part (a) of Theorem 1 confirms that every equilibrium outcome must be obedient,

and the idea behind the proof is similar to Theorem 1(a) in Zapechelnyuk (2023).

Consider all on-path messages after which R plays j with a positive probability. If

the same action is a best response after all these messages, then she should choose

the same action without knowing which of these messages was sent. Since R chooses

the same optimal action after all these messages, we can “bundle” them into a single

“recommendation” to take action j. Part (b) of Theorem 1 characterizes the set of

deterministic equilibrium outcomes, and its proof suggests a simple way of implementing

them in a pure-strategy equilibrium with at most K on-path messages that essentially

serve as action recommendations. Specifically, if {Wj}j∈J is an outcome partition, then

Wj serves as both the set of states in which R plays action j and as the on-path message

recommending action j in the constructed equilibrium inducing this outcome.

While Theorem 1 fully characterizes the set of deterministic equilibrium outcomes,

it does not provide a full characterization of the entire set of equilibrium outcomes.

In general, an IC and obedient non-deterministic outcome may or may not be an

equilibrium outcome. For instance, consider the seminal example from Kamenica and

Gentzkow (2011).

Example 1. Suppose S is a prosecutor and R is a judge. The state of the world is

binary: Θ = {1, 2} = {innocent, guilty}, R’s action space is binary: J = {1, 2} =

{acquit, convict}, and the prior is µ0(1) = 0.7. S’s preferences are v(1) = 0 and

v(2) = 1, while R’s objective is to “match the state”: u(1, 1) = u(2, 2) = 1, and

u(1, 2) = u(2, 1) = 0. Consider an outcome α∗ where α∗(2 | 2) = 1 and α∗(2 | 1) = 3/7.

It is easy to verify that α∗ is both IC and obedient. However, α∗ is not an equilibrium

outcome: when θ = 1, R convicts with probability 3/7 and acquits with probability

4/7. Since S strictly prefers conviction, he has a profitable deviation to sending the

message after which R convicts when θ = 1.

Example 1 illustrates that (IC and obedient) outcomes in which S receives different

payoffs from different messages in the same state cannot be equilibrium outcomes. Once

the state is realized, S’s message space becomes fixed and known. Thus, if S mixes

between multiple messages in the same state, he must receive the same payoff from all

these messages. In Section 5, we show that once S’s set of available messages is rich

and determined stochastically, IC and obedience become necessary and sufficient for
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equilibrium implementation of a commitment outcome, because the requirement for S’s

payoff to remain constant in state θ is lifted.

Of course, if S does receive the same payoff in every state, then an IC, obedient

and non-deterministic outcome could be an equilibrium outcome. However, in any such

equilibrium, R must play a mixed strategy:

Lemma 1. Suppose that α is a non-deterministic outcome induced by an equilibrium

(σ, τ, q). Then in each state θ ∈ Θ such that α(· | θ) is non-degenerate, R is playing a

mixed strategy (meaning τ(· | m) is non-degenerate) for some m ∈ supp σ(· | θ).

Proof. Let θ ∈ Θ be a state such that α(· | θ) is non-degenerate. By contradiction,

suppose that τ(· | m) is degenerate for all m ∈ supp σ(· | θ). By equilibrium condi-

tion (i), for any pair of messages m,m′ ∈ supp σ(· | θ), we have
∑
j∈J

v(j)τ(j | m) =∑
j∈J

v(j)τ(j | m′), implying that there exists an action j∗ ∈ J such that τ(j∗ | m) =

τ(j∗ | m′) = 1. In other words, if R is not mixing, every message sent by S in state θ

leads R to take the same action. Therefore, α(j∗ | θ) =
∑

m∈Mj(σ,τ)

τ(j∗ | m)σ(m | θ) = 1,

which is a contradiction.

The contrapositive of Lemma 1 also tells us that if R is not mixing in an equilibrium

(e.g., if she uses an exogenously-given tie-breaking rule like in informed information

design), then an obedient outcome is an equilibrium outcome if and only if it is IC and

deterministic. Theorem 1 and Lemma 1 together highlight the difference in equilibrium

sets between our verifiable disclosure game and informed information design (KS and

Z). KS’s characterization (Proposition 2) states that an outcome is interim optimal (IO)

if and only if it is obedient and IOC, where IOC essentially requires that for every set of

states Q, and for every state in Q, S does not strictly prefer R having a belief supported

on Q.12 Naturally, the first difference—IOC in their setting versus IC in ours—arises

from the difference in equilibrium selection, as they impose a stronger restriction on

off-path beliefs than we do. The second difference is that IOC and obedience are

necessary and sufficient for an outcome to be IO, while for us IC and obedience are not

sufficient. Since in our model the sender chooses messages, an additional restriction

applies: S can mix between different messages only if they yield the same expected

payoffs—a constraint absent in informed information design. For this reason, some

12In contrast, IC only requires that in any given state, S does not strictly prefer inducing the degenerate
belief at that state. Interestingly, KS also show that IOC and IC are equivalent if S’s value function
is quasiconvex in R’s belief (Proposition 3) or if R chooses between two actions (Lemma B.2).
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non-deterministic IO, and thus IC, outcomes are not equilibrium outcomes in our game

(e.g., one from Example 1).

Theorem 1 characterizes all pure-strategy equilibria of the game, as these equilibria

are deterministic. Koessler and Renault (2012) find that IC and obedience are necessary

and sufficient for a pure-strategy outcome to be an equilibrium outcome in a setting

where S has state-independent preferences, sends verifiable messages, and sets a price,

and R chooses between two actions. Theorem 1 highlights that their result: (1) extends

to cases where R has more than two actions, and (2) is not driven by S’s additional

choice variable (price).13

4. Value of Commitment

In this section, we ask: when is a commitment outcome, a solution to the information

design problem, also an equilibrium outcome? In the information design problem, stage

1 of the game (in which the sender learns the state) is removed, and stage 2 of the game

(in which the sender chooses a verifiable message) is replaced by S committing to an

experiment that sends signals depending on state realizations. 14 Importantly, when

S has commitment power, he no longer faces an incentive-compatibility constraint: he

does not need to maximize his utility state-by-state, nor do his signals need to be

verifiable.

Following Kamenica and Gentzkow (2011), we focus on straightforward signals that

R interprets as action recommendations. Therefore, an (optimal) commitment outcome

ψ ∈ Ψ solves

max
ψ∈Ψ

Vψ subject to, for each action j ∈ J,∫
Θ

(u(j, θ)− u(j′, θ))ψ(j | θ) dµ0(θ) ≥ 0 for all j′ ∈ J ∖ {j}.
(CO)

Simply put, a commitment outcome is an obedient outcome that maximizes S’s ex-

ante utility. We refer to the value of problem (CO) as the commitment payoff. Our

second result shows that a commitment outcome must be deterministic and incentive-

compatible to be an equilibrium outcome.

13However, as the authors point out, the price choice in their setting ensures that R plays a pure strategy
in equilibrium.

14An experiment (S, χ) consists of a compact metrizable space S of signals and a Borel measurable
function χ : Θ → ∆S. R observes the choice of the experiment and a signal realization s ∈ S drawn
from χ(· | θ), where θ is the realized state.
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Theorem 2. Consider a commitment outcome ψ ∈ Ψ.

(a) If ψ is IC and deterministic, then it is an equilibrium outcome.

(b) If ψ is an equilibrium outcome, then it is IC and µ0-almost everywhere determi-

nistic.

Part (a). Recall that every commitment outcome is obedient. Therefore, if ψ is IC and

deterministic, Part (b) of Theorem 1 implies that it is an equilibrium outcome.

[Part (b)] Suppose a commitment outcome ψ is an equilibrium outcome, meaning

that there exists an equilibrium (σ, τ, q) that induces it. By Theorem 1, ψ is incentive-

compatible. We will now show that ψ is deterministic µ0-almost everywhere. Define

T := {θ ∈ Θ | ψ(· | θ) is non-degenerate} as the set of states where R plays multiple

actions and suppose, by contradiction, that µ0(T ) > 0. By Lemma 1, for each θ ∈ T ,

there exists a message m ∈ supp σ(· | θ) such that τ(· | m) is non-degenerate. Let

M̃ := {m ∈M | τ(· | m) is non-degenerate} be the set of messages after which R plays

a mixed strategy. Define τ̃(j∗ | m) := 1(j∗ = max
j∈supp τ(· | m)

j) for all m ∈ M as R’s

strategy that breaks all ties in τ in favor of S. Denote the outcome from the strategy

profile (σ, τ̃) by ψ̃.

We derive a contradiction by showing that ψ̃ is an obedient outcome with Vψ̃ > Vψ,

which implies that ψ is not a commitment outcome. Indeed, we have vψ̃(θ) > vψ(θ)

for all θ ∈ T (since there exists an m ∈ M̃ with σ(m | θ) > 0), while vψ̃(θ) = vψ(θ)

for all θ /∈ T . Therefore, Vψ̃ − Vψ =
∫
T

(vψ̃(θ) − vψ(θ)) dµ0(θ) > 0 since µ0(T ) > 0. To

prove that ψ̃ is obedient, we apply equilibrium condition (ii) for the equilibrium (σ, τ, q)

and follow the steps in the proof of Theorem 1(a), replacing τ with τ̃ and noting that

Mj(σ, τ̃) ⊆Mj(σ, τ).

The non-trivial part of Theorem 2 involves proving that if ψ is both an equilibrium

and a commitment outcome, then it is deterministic almost everywhere. This is equiva-

lent to showing that a non-deterministic equilibrium outcome cannot be a commitment

outcome. Indeed, by Lemma 1, in the equilibrium inducing ψ, R must play a mixed

strategy following some on-path messages from a positive measure of states. However,

breaking those ties in favor of the S-preferred action strictly increases S’s ex-ante utility,

which implies that ψ is not a commitment outcome.

In many relevant settings, R chooses between two actions. In this case, the analysis

vastly simplifies. From R’s perspective, there are “bad” states θ ∈ A1, in which R prefers

the low action 1, and “good” states θ /∈ A1, in which she prefers the high action 2. The

highest payoff that S can achieve is v(2) (when R takes action 2 with probability one),
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and the lowest is v(1). To state that an outcome ψ ∈ Ψ is incentive-compatible, it

suffices to show that θ /∈ A1 implies that vψ(θ) = v(2)ψ(2 | θ) + v(1)ψ(1 | θ) ≥ v(2),

which is equivalent to ψ(2 | θ) = 1. The IC condition for θ ∈ A1 is not relevant because

v(1) is already the lowest payoff in the game. In words, an outcome is IC if and only

if R plays action 2 with probability one in all states where action 2 is the unique best

response under complete information. The following result establishes the existence of

an incentive-compatible commitment outcome when R chooses between two actions.

Proposition 1. If |J | = 2, then there exists an IC commitment outcome.

Proof. Since Θ is a compact subset of Rn, a commitment outcome exists by Proposition

3 in the Online Appendix of Kamenica and Gentzkow (2011) and Theorem 1 in Terstiege

and Wasser (2023). Let ψ ∈ Ψ be a commitment outcome and let ψ̃ ∈ Ψ be an outcome

such that ψ̃(· | θ) = ψ(· | θ) for all θ /∈ A2 and ψ̃(2 | θ) = 1 for all θ ∈ A2. By

construction, ψ̃ is incentive-compatible and weakly increases S’s ex-ante utility over ψ.

Define δ(θ) := u(2, θ)− u(1, θ) and observe that∫
Θ

δ(θ)ψ̃(2 | θ) dµ0(θ) =

∫
Θ

δ(θ)ψ(2 | θ) dµ0(θ) +

∫
A2

δ(θ)(1− ψ(2 | θ)) dµ0(θ),

where the last term is non-negative because δ(θ) ≥ 0 for all θ ∈ A2. Consequently,

obedience of ψ (for both actions) implies obedience of ψ̃. Hence, ψ̃ is also a commitment

outcome.

The existing literature provides additional insights into commitment outcomes

when |J | = 2 and Θ is finite. Alonso and Câmara (2016) show that each commitment

outcome is characterized by a cutoff state θ∗, with all states satisfying δ(θ) > δ(θ∗)

pooled together to recommend action 2. In particular, all good states θ /∈ A1 recom-

mend action 2, which implies that every commitment outcome is incentive-compatible

(see also Lemma B.2 in Koessler and Skreta, 2023). Our Proposition 1 also deals

with the case when Θ is rich, in which case some commitment outcomes are not IC

(although they are IC µ0-almost everywhere), and its proof outlines how to make an

existing commitment outcome incentive-compatible.

Returning to the more general case with J ≥ 2, Theorem 2 is useful for verifying

whether an existing commitment outcome ψ is an equilibrium outcome. The answer is

affirmative if and only if ψ is deterministic µ0-a.e. and incentive-compatible. Although

verifying incentive-compatibility may be straightforward, a deterministic commitment

outcome is not guaranteed to exist. In the remainder of this section, we consider the

cases where Θ is rich and finite separately. We show that when Θ is rich, a deterministic
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commitment outcome always exists. Furthermore, if |J | = 2, the commitment payoff is

always attained in equilibrium. When Θ is finite, we derive an approximation result.

4.1. Rich State Space

When the state space Θ is rich (a convex and compact subset of Rn) and the prior µ0

is atomless, the existence of a deterministic commitment outcome is guaranteed.

Proposition 2. If Θ is rich, then a deterministic commitment outcome exists. Fur-

thermore, a deterministic commitment outcome is an equilibrium outcome if and only

if it is IC.

Proof. The existence of a commitment outcome ψ follows using the same argument as

in the proof of Proposition 1. Furthermore, ψ(j | ·) : Θ → [0, 1] is Borel measurable for

every j ∈ J , and
∑
j∈J

ψ(j | θ) = 1 for all θ ∈ Θ. Let µj be such that dµj := u(j, ·) dµ0

for each j ∈ J .

Since µ0 is a finite and atomless positive measure and u is bounded, µj is a finite

and atomless signed measure for each j ∈ J . By Theorem 2.1 in Dvoretzky, Wald, and

Wolfowitz (1951), since J is finite, there exist Borel measurable functions ψ̃(j | ·) : Θ →
{0, 1} for all j ∈ J , with

∑
j∈J

ψ̃(j | ·) = 1, such that (I)
∫
Θ

ψ̃(j | θ) dµ0 =
∫
Θ

ψ(j | θ) dµ0

and (II)
∫
Θ

ψ̃(j | θ) dµj =
∫
Θ

ψ(j | θ) dµj for all j ∈ J . Condition (I) implies that

Vψ̃ =

∫
Θ

∑
j∈J

v(j)ψ̃(j | θ) dµ0 =

∫
Θ

∑
j∈J

v(j)ψ(j | θ) dµ0 = Vψ.

Condition (II) implies that ψ̃ is obedient, as ψ is. Hence, ψ̃ is a deterministic commit-

ment outcome. The second part follows from Theorem 2.

Verifying whether a deterministic commitment outcome with partition {Wj}j∈J
is incentive-compatible (and therefore an equilibrium outcome) is straightforward. It

requires checking that θ ∈ Wj implies v(j) ≥ v(θ) for all θ ∈ Θ. Consider the following

example from Gentzkow and Kamenica (2016).

Example 2. Suppose R has three actions, J = {1, 2, 3}, and the prior is uniform on

Θ = [0, 1]. S’s payoffs are given by v(1) = 0, v(2) = 1, and v(3) = 3. R’s preferences

depend only on the posterior mean. Given belief µ ∈ ∆Θ, action 1 is optimal if and

only if Eµ[θ] ≤ 1/3; action 2 is optimal if and only if Eµ[θ] ∈ [1/3, 2/3]; action 3 is

optimal if and only if Eµ[θ] ≥ 2/3. Therefore, R’s complete-information action sets are
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A1 = [0, 1/3], A2 = [1/3, 2/3], and A3 = [2/3, 1]. Gentzkow and Kamenica (2016) identify a

deterministic commitment outcome ψ with an outcome partition W 1 = [0, 8/48), W 2 =

(11/48, 21/48), and W 3 = [8/48, 11/48] ∪ [21/48, 1]. This outcome is incentive-compatible,

which we illustrate in Figure 1. Since ψ is a deterministic and IC commitment outcome,

it is an equilibrium outcome by Proposition 2.

θ

1

1
3

3

2
3

10

v(θ)

(a) S’s lowest payoff under
complete information.

θ

3

8
48

11
48

1

21
48

1

vψ(θ)

(b) S’s expected payoff in the
commitment outcome.

θ

3

8
48

1

21
48

11
3

2
3

0

v(θ)

vψ(θ)

(c) ψ is IC since
vψ(θ) ≥ v(θ) for all θ ∈ [0, 1].

Figure 1. Commitment outcome ψ is incentive-compatible since S receives at least
his complete information payoff in every state of the world.

When R chooses between two actions, S always attains his commitment payoff in

equilibrium.

Proposition 3. If Θ is rich and |J | = 2, then there exists a commitment outcome that

is an equilibrium outcome.

Proof. By Proposition 2, there exists a deterministic commitment outcome ψ. Us-

ing the same argument as in the proof of Proposition 1, we construct a deterministic

commitment outcome ψ̃ that is IC. By Proposition 2, ψ̃ is an equilibrium outcome.

4.2. Finite State Space

When the state space is finite, i.e., Θ = {1, . . . , N}, a deterministic commitment out-

come may not exist. For instance, in Example 1, the unique commitment outcome is

not deterministic. As a result, S may not be able to achieve the commitment payoff in

equilibrium.

However, here we show that when the state space is sufficiently rich (in the sense

that µ0(θ) is sufficiently small for each θ ∈ Θ), then S’s equilibrium payoff approaches

his commitment payoff. For a concise argument, we adopt the assumptions of Alonso

and Câmara (2016): R has a binary action and

θ′ ̸= θ′′ =⇒ δ(θ′) ̸= δ(θ′′), (RU)
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where δ(θ) = u(2, θ)− u(1, θ) for all θ ∈ Θ.

Proposition 4. Suppose that Θ is finite, |J | = 2, (RU) holds, and S’s payoffs are

normalized to v(2) = 1 and v(1) = 0.15 Let V ∗ be S’s commitment payoff. For every

ε > 0, there is γ > 0 such that if µ0(θ) < γ for all θ ∈ Θ, then there exists an equilibrium

outcome α with |V ∗ − Vα| < ε.

Proof. If A2 = Θ then let α(2 | θ) = 1 for all θ ∈ Θ so that Vα = V ∗. Thus, we assume

for the remainder of the proof that A2 is a proper subset of Θ. Since (RU) holds, we can

use Proposition 2 in Alonso and Câmara (2016) to find a cutoff state θ∗ ∈ Θ such that

δ(θ∗) < 0 and, for every commitment outcome ψ, we have ψ(2 | θ) = 1 (ψ(1 | θ) = 1) for

all θ ∈ Θ such that δ(θ) > δ(θ∗) (δ(θ) < δ(θ∗)). Now, consider a deterministic outcome

α with partition {W1,W2} such that W2 = {θ ∈ Θ | ψ(2 | θ) = 1} and W1 = Θ ∖W2.

It is easy to see that α is IC and obedient, and therefore it is an equilibrium outcome

by Theorem 1. The difference in S’s ex-ante payoffs is zero if ψ(2 | θ∗) = 1; otherwise,

we have V ∗ − Vα = ψ(2 | θ∗)µ0(θ
∗) < µ0(θ

∗) < γ := ε.

Thus, when R chooses between two actions, S can attain a payoff arbitrarily close

to his commitment payoff in equilibrium, as long as the prior probability of each state

is sufficiently small.

5. A Model with a Stochastic Message Mapping

In the main model, IC and obedience were not sufficient for an outcome to be induced

by an equilibrium; non-deterministic but IC and obedient outcomes exist in which S

effectively recommends multiple actions, leading to different expected payoffs in the

same state. This violates equilibrium condition (i). The reason why (i) is violated is

that the mapping E : Θ ⇒ M , a correspondence that determines the set of messages

available in state θ, is deterministic. This assumption is standard in the literature on

verifiable disclosure and cheap talk.16 In some cases, however, it is reasonable to assume

that the mapping E(θ) is stochastic: for example, there may be different labels for the

same state, and S can make statements about the label rather than the state. In this

section, we introduce a verifiable disclosure game with a stochastic message mapping

15Normalizing S’s payoffs is without loss of generality; condition (RU) simplifies the proof, but the result
remains true without it.

16For example, in Grossman (1981), Milgrom (1981), and Milgrom and Roberts (1986), E(θ) includes
subsets of Θ that contain θ. In Dye (1985), E(θ) is binary, S can reveal θ or say nothing. In Hart,
Kremer, and Perry (2017) and Ben-Porath, Dekel, and Lipman (2019), E(θ) is a partial order on Θ.
In cheap talk, E(θ) is the same for all θ ∈ Θ.
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(henceforth, the SMM game) and show that IC and obedience are sufficient for an

outcome to be an equilibrium outcome of that game.

The SMM game has the same timeline and players’ objectives as our main model,

with the only modification occurring in Stage 2, where S communicates with R. Specif-

ically, we assume that along with the state of the world θ ∈ Θ, where the state space

Θ = {1, . . . , N} is finite, S also observes a label x ∈ [0, 1], which is payoff-irrelevant

to both S and R. The label x is drawn from the uniform distribution on Xθ, where

{Xθ}θ∈Θ forms a partition of the unit interval such that λ(Xθ) = µ0(θ), where λ is

the Lebesgue measure.17 Having observed θ and x, S sends message m ∈ M̂ such that

x ∈ m, where M̂ is the collection of nonempty Borel subsets of [0, 1]. Thus, the set of

messages available to S in state θ is now determined stochastically (through x). The

equilibrium of the SMM game (σ̂, τ̂ , q̂) is defined analogously to that of the main model,

except S’s strategy also depends on x.

Definition 4. A triple (σ̂, τ̂ , q̂), where σ̂ : Θ× [0, 1] → ∆0M̂ is S’s strategy, τ̂ : M̂ →
∆J is R’s strategy and q̂ : M̂ → ∆Θ is R’s belief system, is an equilibrium of the SMM

game if

(i) For all θ ∈ Θ and x ∈ [0, 1], σ̂(· | θ, x) is supported on argmax
{m∈M̂ | x∈m}

∑
j∈J

v(j) τ̂(j | m);

(ii) For all m ∈ M̂ , τ̂(· | m) is supported on argmax
j∈J

∫
Θ

u(j, θ) dq(θ | m);

(iii) q̂ is obtained from µ0, given σ̂, using Bayes rule.

(iv) For all m ∈ M̂ , q̂(· | m) ∈ ∆{θ ∈ Θ | Xθ ∩m ̸= ∅}.

Since x is payoff-irrelevant, an outcome α of the SMM game is an element of Ψ.

An outcome α is an equilibrium outcome of the SMM game if an equilibrium (σ̂, τ̂ , q̂)

exists that induces it, i.e., α(j | θ) = 1
µ0(θ)

∫
Xθ

∑
m∈supp σ̂(· | θ,x)

σ̂(m | θ, x)τ̂(j | m) dx.

We derive a sharp characterization of equilibrium outcomes in the SMM game.

Theorem 3. Let Θ be finite. Then, α ∈ Ψ is an equilibrium outcome of the SMM

game ⇐⇒ α is IC and obedient.

Proof. (=⇒) is proved exactly the same way as Theorem 1 (a). An equilibrium outcome

must be IC or else S has a profitable deviation to fully revealing x (which also reveals

θ ∈ Θ since x ∈ Xθ). An equilibrium outcome must be obedient by Bayes rule.

17For example, let t0 := 0, tθ :=
θ∑

θ′=1

µ0(θ
′) for all θ ∈ Θ; also, let Xθ = [tθ−1, tθ) for all θ ∈ {1, . . . , N−1}

and tN = [tN−1, 1]. Then, {Xθ}θ∈Θ is a partition of [0, 1] and λ(Xθ) =
θ∑

θ′=1

µ0(θ
′)−

θ−1∑
θ′=1

µ0(θ
′) = µ0(θ).
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(⇐=) Consider an IC and obedient outcome α. For every θ ∈ Θ, let Jθ :=

supp α(· | θ) be the set of actions that R takes with a positive probability when

the realized state is θ. Next, partition Xθ into a set of intervals {Xθ
j }j∈Jθ such that

λ(Xθ
j )

λ(Xθ)
= α(j | θ). Also, for each action j ∈ J , let Wj :=

⋃
θ∈Θ

Xθ
j ; by construction,

{Wj}j∈J is a partition of [0, 1].

Now, let S’s strategy be σ̂(m | θ, x) = 1(m = Wj and x ∈ Wj). Then, R’s posterior

after an on-path message Wj is q̂(θ | Wj) =
λ(Xθ

j )

λ(Wj)
. Furthermore, since α is obedient,

for every action j ∈ J such that λ(Wj) > 0, we have∑
θ∈Θ

(
u(j, θ)− u(j′, θ)

)
α(j | θ)µ0(θ) ≥ 0 ⇐⇒

∑
θ∈Θ

(
u(j, θ)− u(j′, θ)

)λ(Xθ
j )

λ(Wj)
≥ 0 for all j′ ∈ J ∖ {j},

meaning that R prefers to take action j after message Wj, so we let τ̂(j | Wj) = 1. Off

the path, let R be “skeptical” and assume that any unexpected message comes from the

state in which S benefits from such deviation the most. Formally, for all m /∈ {Wj}j∈J ,
let q̂(· | m) ∈ ∆Aj, where j ∈ J is the lowest action such that m∩Xθ ̸= ∅ and θ ∈ Ai.

Then, playing action j is a best response to message m, so we let τ̂(j | m) = 1. Since

α is IC, S does not have profitable deviations by the same argument as in the proof

of Theorem 1. Deviations to on-path messages are not available because {Wj}j∈J is a

partition, while deviations to off-path messages are not profitable since the payoff from

any deviation in state θ is at most v(θ), which is below vα(θ) by the (ICθ) constraint.

Hence, (σ̂, τ̂ , q̂) is an equilibrium of the SMM game.

In contrast to Theorem 1, incentive-compatibility and obedience are necessary and

sufficient for an outcome to be an equilibrium outcome of the SMM game. Two prop-

erties of the SMM game ensure that every IC and obedient outcome is an equilibrium

outcome. First, S’s message space depends on x, which means S may receive different

equilibrium payoffs in some state θ (but for different realizations of x). Secondly, the

message space is “rich,” meaning that for every vector p = (p1, . . . , pN) ∈ [0, 1]N there

exists a message m that is available in state θ ∈ Θ with probability pθ. This richness

allows us to “purify” any non-deterministic outcome: the equilibria that we construct

to implement an IC and obedient outcome is in pure strategies of both S and R.

Using the sharp equilibrium characterization of the SMM game, we derive the

following results.

Corollary 1. Let Θ be finite. Then, a commitment outcome is an equilibrium outcome
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of the SMM game if and only if it is IC.

Corollary 2. If Θ is finite and |J | = 2, then every commitment outcome is an

equilibrium outcome of the SMM game.

Corollary 1 is a direct consequence of Theorem 3. Corollary 2 follows from Alonso

and Câmara (2016), who show that every commitment outcome is incentive-compatible

(see also our discussion after Proposition 1) and Theorem 3, which ensures that every

such outcome is an equilibrium outcome.

The set of equilibrium outcomes in the SMM game coincides with the set of IO

outcomes found in KS if S’s value function is quasiconvex in R’s belief (KS Proposition

3), or when R chooses between two actions, then these two sets coincide (KS Proposition

4). Generally, the set of IO outcomes is a subset of the set of equilibrium outcomes in

KS, because interim-optimality is a stronger restriction on off-path beliefs.

6. Conclusion

This paper examines a persuasion game with verifiable information, in which a sender

with transparent motives chooses which verifiable messages to send to a receiver in

order to convince her to take a particular action from a finite set. We show that every

equilibrium outcome must be incentive-compatible for the sender and obedient for the

receiver. If an outcome is deterministic, then these conditions are both necessary and

sufficient for it to be an equilibrium outcome. We also identify sufficient conditions un-

der which the ex-ante commitment assumption in Bayesian persuasion can be replaced

by communication with verifiable information. We show that if the state space is rich,

then a deterministic commitment outcome always exists; that commitment outcome is

an equilibrium outcome if and only if the sender receives at least his complete informa-

tion payoff in every state. If the receiver chooses between two actions, this condition is

automatically satisfied. We hope these results prove useful in applied settings.
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