
Optimal Procurement Design:

A Reduced Form Approach

Kun Zhang∗

January 17, 2023†

Preliminary

Abstract

Standard procurement models make the implicit assumption that the buyer knows

the quality of the object at the time she procures, but in many cases, the quality is

learned long after the procurement. We study procurement settings where the buyer’s

valuation of the good supplied depends directly on its quality, and the quality is both

unverifiable and unobservable to the buyer. For a broad class of procurement problems,

we identify the procurement mechanisms that maximize the buyer’s expected payoff

and the expected social surplus, respectively. In both cases, the optimal mechanism

can be implemented by a dynamic combination of the two commonly used procurement

methods: auction and negotiation. Procurement mechanisms of this kind are used in

the Italian public procurement system.
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1 Introduction

Procurement plays an important role in almost all kinds of organizations. Hospitals rely on

procurement to obtain medical devices (Bonaccorsi, Lyon, Pammolli, and Turchetti, 2000),

and governments procure weapons and public services (Lalive, Schmutzler, and Zulehner,

2015). Firms obtain most of their production inputs as well as many components of their

product lines from procurement. The most widely used procurement methods are competi-

tive bidding and negotiating with individual suppliers.

In many procurement settings, the buyer’s valuation of the good supplied depends di-

rectly on its quality, but the quality is, at least partially, unverifiable to a court, and also

unobservable to the buyer at the time that the procurement contract is signed. To illustrate,

suppose Anne would like to find a food service company for her workplace. While she can

write in the contract that, say, all ingredients have to be organic and fair traded, and the

chef has to be certified, it is certainly infeasible to require how tasty the food has to be since

it cannot be verified. Before signing the contract, Anne might be able to taste a couple of

dishes, but it is only possible for her to completely understand the “true quality” of the food

service provider after dining there for a couple of weeks, if not a couple of months. When

the quality of the good supplied is both unverifiable and unobservable, what procurement

mechanisms can be optimal? How do the optimal mechanisms relate to the most common

procurement methods, to wit, competitive bidding and negotiation?

To answer these questions, we revisit the optimal procurement design problem studied

in Manelli and Vincent (1995), where the buyer’s valuation is a function of quality, and each

supplier’s quality, which is one dimensional, is her private information. Following Manelli

and Vincent (1995), we model competitive bidding as a second-price auction, and model

negotiation as the buyer making take-it-or-leave-it offers. We also consider two objectives:

maximizing the buyer’s expected payoff, and maximizing expected social surplus; the latter

can be relevant in government procurement design problems.1 We focus on the case that the

sellers are symmetric, that is, their qualities are independently and identically distributed.

Manelli and Vincent (1995) concern the optimality of the two commonly used procure-

ment methods. They find that when the buyer’s marginal valuation of quality is uniformly

small, conducting an auction is optimal; and when the buyer’s marginal valuation of quality

is uniformly large, making individual offers is optimal.2

More complicated curvatures; however, arise naturally in many relevant procurement

1We argue in Section 5.2 that the main results continue to hold if the objective is a weighted average of
these two.

2More precisely, by “uniformly large” we mean that the buyer’s marginal valuation of quality uniformly
dominates a certain function, and it is “uniformly small” if it is uniformly dominated by the same function.
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Figure 1: In panel (a), the buyer’s valuation curve is strictly concave in quality; in particular, the
marginal valuation is large when quality is low, and small when quality is high. In panel (b), the
buyer’s marginal valuation is small on [0, q∗] and large on [q∗, 1].

problems. For example, in many procurement settings, it is natural to assume that the

buyer’s valuation function looks like Figure 1a: the marginal valuation is large when quality

is low, and small when quality is high; this is illustrated in Figure 1a. As another example,

suppose a firm procures an input for its product. While the firm does not observe the quality

of the input, they know that all else equal, the final product can be sold in the high-end

market if and only if the input quality is above a certain threshold, otherwise it has to be sold

in the low-end market; and the consumers in the high-end market are much more sensitive to

the quality of the product.3 Consequently, the firm’s marginal valuation of quality, as shown

in Figure 1b, is much larger when the quality of the input is above the quality threshold

q∗ than below q∗. We, instead, explicitly solve for the buyer’s optimal and socially optimal

procurement mechanisms.

To find the optimal procurement mechanisms, we adopt a “reduced form” approach.

Specifically, we transform both buyer’s optimal and socially optimal design problems into

choosing an interim allocation rule that maximizes a linear functional identified by some vir-

tual surplus.4 Virtual surplus is a function of quality that specifies the payoff from trading

with a potential seller. The interim allocation rule has to satisfy a monotonicity constraint

that ensures incentive compatibility (or truthtelling), and Border’s (1991) condition that

guarantees feasibility. Then we apply techniques on linear optimization under a majoriza-

tion constraint developed by Kleiner, Moldovanu, and Strack (2020) to characterize both

3For a concrete example, consider an automobile manufacturer that procures material (say steel or alu-
minum) for car bodies. Cars with low-quality body materials can be sold to some low-end markets where
consumers mainly care about prices. To break into European or North American markets; however, a car
model has to pass some crash tests to gain trust, and consumers in these markets care much more about
safety.

4An interim allocation rule, specifies, for each reported quality of a seller, the expected probability that
the buyer procures from her. The expectation is taken over all other sellers’ qualities. It is also called a
reduced form in the auction literature.
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the buyer’s optimal and socially optimal interim allocation. Unless the virtual surplus is

decreasing in quality,5 the ironing technique (Myerson, 1981; Toikka, 2011) is needed; we

call the maximal intervals on which the ironed virtual surplus is flat “pooling intervals”. The

optimal interim allocation is constant on each of the pooling intervals, and it is otherwise

strictly decreasing.

To show that a trading mechanism is optimal, we verify that it is consistent with the

optimal interim allocation. On an interval where virtual surplus is decreasing, competi-

tive bidding selects the seller with the lowest quality, and hence optimal.6 On an interval

where virtual surplus is increasing, the buyer’s marginal valuation of quality must be high

enough; so on this interval, she has strong quality concerns. In this case; however, compet-

itive bidding selects the “worst” seller, and negotiation is optimal because it minimizes the

competition among potential sellers. These commonly used procurement mechanisms are,

in fact, “building blocks” for the optimal trading mechanism we identify: we find that it is

optimal to make sellers whose qualities fall in pooling intervals prefer accepting an offer, and

let all other sellers bid in an auction with a reserve price; this is made possible by carefully

choosing offers and reserve prices.

Consequently, under certain regularity conditions, a dynamic combination of second-price

auctions with reserve prices and sequential take-it-or-leave-it offers is optimal. Intuitively,

whenever quality concerns are strong, an auction may perform poorly, so it is optimal to

“locally” replace it, namely on pooling intervals, by take-it-or-leave-it offers. Outside of the

pooling intervals; however, quality concerns are dominated by cost-saving motives, which

makes auctions optimal. The “optimal switching points” are exactly the boundary points

between pooling intervals and intervals on which the optimal interim allocation is strictly

decreasing. This result allows us to identify an optimal trading mechanism in a broad class

of procurement problems.

Interestingly, a similar trading mechanism can be found in the Italian public procurement

system. As noted by Decarolis and Giorgiantonio (2015) and Che, Condorelli, and Kim

(2018), public procurement laws in Italy allow a procurer to negotiate with potential sellers

if an initial auction fails to attract a bid below the reserve price.

5We use “increasing” and “decreasing” in the weak sense: “strict” will be added whenever needed.
6Recall that when one seller wants to sell an indivisible object to potential buyers, a standard auction

selects the buyer who makes the highest bid, and this buyer also has the highest valuation. In a procurement
auction, potential sellers compete for the lowest bid, and thus it selects the seller with the lowest quality.
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Related literature

To the best of our knowledge, procurement problems with unverifiable and unobservable

qualities are first studied by Manelli and Vincent (1995).7 They point out that in many cases,

a standard procurement auction based only on price may have poor performance; instead,

it can be optimal to sequentially render take-it-or-leave-it offers to the potential sellers.

Manelli and Vincent (2004) show that some “hybrid mechanisms” can also be optimal in

certain procurement settings. These mechanisms include making sequential offers first and

conducting an auction if all these offers are rejected, two rounds of sequential offers, as

well as an auction with a reserve price followed by take-it-or-leave-it offers, which are made

only if no sellers meet the reserve price. Compared to these papers, our work identifies

both the buyer’s optimal and socially optimal procurement mechanisms in a broader class

of environments.

The most closely related paper is Lopomo, Persico, and Villa (2022). These authors find

the procurement mechanism that maximizes any weighted average of the expected buyer

surplus and the expected social surplus, under the stronger assumption that the buyer’s

virtual surplus is single-peaked. The optimal mechanism, called Lowball Lottery Auction

(LoLA), only differs from a standard second-price procurement auction with a reserve price

in that sellers are not allowed to bid below a certain “floor price”.8 LoLA is arguably simpler

than the optimal mechanism identified in this paper when the buyer’s virtual surplus is

single-peaked, but it is not clear how it generalizes beyond this environment. Furthermore,

they do not impose the restriction that the buyer’s expected payoff must be nonnegative.

In the mechanism design literature, this is not the only paper that features an optimal

mechanism as a combination of auction and negotiation: similar mechanisms can be optimal

in Che et al. (2018) and Gershkov, Moldovanu, Strack, and Zhang (2021) (see also Zhang

(2018)). Although we share the same rough intuition that it is optimal to use negotiation

instead whenever an auction does not work well, the driving economic forces are very dif-

ferent. In Che et al. (2018) negotiation is used to deter bidder collusion, and in Gershkov

et al. (2021) since bidders’ values are endogenously determined, negotiation can be used to

increase their investment incentives. In this paper; however, negotiation is used to mitigate

quality concerns whenever such concerns are strong enough, namely the marginal valuation

of quality is high enough.

7For a thorough review of the procurement literature, we direct the readers to Che (2008).
8If two or more sellers bid exactly the floor price, each of them supplies the good with equal probability.
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Outline

The remainder of this paper is organized as follows. Section 2 sets up and transforms the

procurement design problems. Section 3 and Section 4 contain our main results on buyer’s

optimal and socially optimal procurement mechanisms, respectively. Section 5 discusses

some assumptions and extensions. Section 6 concludes.

2 The procurement problem

The model, which is essentially the same as in Manelli and Vincent (1995, 2004), consists of

one buyer and n > 1 symmetric potential sellers. The buyer would like to procure one unit

of a product from one of the potential sellers. Seller s has private information qs ∈ [0, 1], and

qs’s are independent and identically distributed according to a continuous density function

f ; we denote the corresponding cumulative distribution function by F . We also assume that

f(q) > 0 for q ∈ (0, 1], and f(0) = 0 only if

lim
q→0

F (q)

f(q)
= 0.

We will refer to qj as the quality of the product offered by Seller j; it can also be interpreted as

Seller j’s cost or reservation value.9 Since we assume that the potential sellers are symmetric,

we often suppress the subscript of a seller’s quality.

All agents in our model are expected utility maximizers. If the buyer procures the good

from a seller, and a transfer t is made, the seller’s payoff is t− q. If a seller does not sell, her

payoff is zero. The buyer’s valuation for a good of quality q is a continuous function v(q). If

the buyer makes a transfer t and receives an object of quality q, her payoff is v(q)− t; if no

trade occurs, the buyer’s payoff is zero.

By the revelation principle, it suffices to focus on direct mechanisms. A direct mechanism

is characterized by a pair of functions ps : [0, 1]n → [0, 1] and ts : [0, 1]n → R for each seller s.

If the sellers report q = (q1, . . . , qn), the buyer procures from seller s with probability ps(q),

and she makes transfer ts(q) to seller s. Because the buyer wishes to procure (at most) one

unit of the product, for each q ∈ [0, 1]n, the feasibility constraint must hold:

n∑
s=1

ps(q) ≤ 1; (F)

(F) requires that the probability that the buyer buys from one of the potential sellers is less

9See Section 5.1 for a further discussion on the interpretation of qj .
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than or equal to 1.

If seller s reports q′s and assumes that the rest of the sellers report truthfully, she would

expect that the buyer procures from her with probability

Ps(q
′
s) :=

∫
ps (q′s,q−s) f

n−1 (q−s) dq−s,

where q−s = (q1, . . . , qs−1, qs+1, . . . , qn), and fn−1(q−s) =
∏

k 6=s f(qk); and she would expect

to receive a monetary transfer of

Ts(q
′
s) :=

∫
ts (q′s,q−s) f

n−1 (q−s) dq−s.

Then the expected payoff of seller s when having quality qs and reporting q′s is

πs(q
′
s | qs) := Ts(q

′
s)− qsPs(q′s);

and we let πs(qs) := πs(q
′
s | qs). We say that a direct mechanism {ps, ts}ns=1 is incentive

compatible if for each seller s, all q′s ∈ [0, 1], and (almost) all qs ∈ [0, 1],

πs(qs) ≥ πs(q
′
s | qs);

and it is individually rational for the sellers if πs(qs) ≥ 0 for each seller s and qs ∈ [0, 1].

Finally, the buyer’s expected payoff under direct mechanism {ps, ts}ns=1 is

πb =
n∑
s=1

∫
[0,1]n

[v (qs) ps(q)− ts(q)] fn(q) dq, (1)

where fn(q) =
∏n

s=1 f(qs).

Lemma 1 characterizes the set of incentive compatible direct mechanisms, and also elim-

inates transfers from the buyer’s expected payoff. The proof is standard and hence omitted.

Lemma 1. Let {ps(·)}ns=1 be a collection of allocation functions, where ps : [0, 1]n → [0, 1],

satisfying (F).

(1) There exists a collection of transfers {ts(·)}ns=1 such that {(ps(·), ts(·)}ns=1 is incentive

compatible if and only if for each s = 1, . . . , n, Ps(·) is decreasing.

(2) For any incentive compatible direct mechanism {(ps(·), ts(·)}ns=1,

i. it is interim individually rational for the sellers if and only if πs(1) ≥ 0;
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ii. and the buyer’s expected payoff is given by

πb =
n∑
s=1

∫ 1

0

[
v (qs)− qs −

F (qs)

f (qs)

]
ps(q)fn(q) dq−

n∑
s=1

πs(1). (2)

To maximize the buyer’s expected payoff, sellers’ individual rationality constraint should

bind at q = 1; that is, πs(1) = 0 for all s = 1, . . . , n. Then Lemma 1 allows us to write the

buyer’s maximization problem as

max
{ps}ns=1

n∑
s=1

∫ 1

0

[
v (qs)− qs −

F (qs)

f (qs)

]
ps(q)fn(q) dq

subject to (F)

Ps(·) is decreasing for each s = 1, . . . , n.

The the social surplus maximization problem can be written as

max
{ps}ns=1

n∑
s=1

∫ 1

0

[v (qs)− qs] ps(q)fn(q) dq

subject to (F)

Ps(·) is decreasing for each s = 1, . . . , n
n∑
s=1

∫ 1

0

[
v (qs)− qs −

F (qs)

f (qs)

]
ps(q)fn(q) dq ≥ 0,

where the objective function is the expected social surplus from trade, and it is without loss

to set πs(1) = 0 for all s = 1, . . . , n. The inequality constraint requires that the buyer’s

expected payoff must be nonnegative.

2.1 Detour: Majorization

Let f, g ∈ L1(0, 1) be decreasing. Say that f majorizes g, denoted by g ≺ f , if the following

two conditions hold: ∫ x

0

g(s) ds ≤
∫ x

0

f(s) ds for all x ∈ [0, 1], (3)∫ 1

0

g(s) ds =

∫ 1

0

f(s) ds. (4)

Say that f weakly majorizes g, denoted by g ≺w f , if (3) holds (but not necessarily (4)).

In what follows we make use of some results on linear maximization under a majorization
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constraint developed by Kleiner et al. (2020). For readers’ convenience, we include these

results in Appendix A.

2.2 Transforming the problem: A reduced form approach

One novelty of this paper is that, instead of using a duality approach to characterize the

optimal ex post allocation rule, we adopt a reduced form approach: we solve for the optimal

interim allocation and identify a trading mechanism that implements it.

To this end, note that the buyer’s expected payoff (2) can be written as, in terms of

interim allocation probabilities,

πb =
n∑
s=1

∫ 1

0

[
v (qs)− qs −

F (qs)

f (qs)

]
Ps(qs)f(qs) dqs.

Say that the collection of interim allocations {Ps}ns=1, where Ps : [0, 1] → [0, 1] for each s,

is implementable if there exists a collection of allocation probabilities {ps}ns=1 satisfying

(F) that induces {Ps}ns=1 as its interim allocations; that is, for each s = 1, . . . , n and all

qs ∈ [0, 1],

Ps(qs) =

∫
ps (qs,q−s) f

n−1 (q−s) dq−s.

Since the sellers are symmetric, it is without loss to restrict attention to symmetric interim

allocations; so we can drop the subscript s from Ps and qs, and write P and q instead.

Consequently, the buyer’s expected payoff further reduces to

πb = n

∫ 1

0

[
v(q)− q − F (q)

f(q)

]
P (q)f(q) dq.

Consider the quantile s = F (θ), we define

P̃ (s) := P (F−1(s))

as the quantile interim allocation. Let P̃ ∗(s) = (1− s)n−1; it is not difficult to see that

P̃ ∗(·) is the quantile interim allocation of the allocation rule that always procuring from the

seller with the lowest quality.

Border’s (1991) celebrated theorem characterizes the set of implementable interim allo-

cations.10 Lemma 2 translates Border’s condition into majorization terminology.11

10Maskin and Riley (1984) and Matthews (1984) also make important contribution to this result; and it
is extended to asymmetric auctions by Border (2007) and Mierendorff (2011).

11To the best of our knowledge, Gershkov, Goeree, Kushnir, Moldovanu, and Shi (2013) is the first paper
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Lemma 2 (Border’s condition). A decreasing symmetric interim allocation rule P is imple-

mentable if and only if the associated quantile interim allocation P̃ (s) = P (F−1(s)) is weakly

majorized by P̃ ∗.

To simplify notation, let h(q) := v(q)− q denote the social surplus function, and let

g(q) := v(q)− q − F (q)

f(q)
,

denote the buyer’s virtual surplus. By Lemma 2, the quantile interim allocation of a direct

mechanism that maximizes the buyer’s expected payoff can be found by solving

max
P̃∈Ωw(P̃ ∗)

∫ 1

0

g(F−1(s))P̃ (s) ds (5)

where

Ωw(P̃ ∗) =
{
P̃ ∈ L1(0, 1) : P̃ is decreasing and P̃ ≺w P̃ ∗

}
.

It is straightforward to show that a solution to problem (5) exists: the objective functional

is continuous and Ωw(P̃ ∗) is compact by the Helly’s selection theorem.12

The socially optimal interim allocation should solve the following problem:

max
P̃∈Ωw(P̃ ∗)

∫ 1

0

h(F−1(s))P̃ (s) ds (6)

s.t.

∫ 1

0

g(F−1(s))P̃ (s) ds ≥ 0.

A solution to problem (6) exists: since Ωw(P̃ ∗) is compact, the constraint set

Ωw(P̃ ∗) ∩
{
P̃ ∈ L1(0, 1) :

∫ 1

0

g(F−1(s))P̃ (s) ds ≥ 0

}
is the intersection of a closed set and a compact set and hence also compact.

that connects Border’s condition to majorization (see their Footnote 4). We omit the proof of Lemma 2
since it can be proved by slightly modifying the proof of, for example, Theorem 1 in Hart and Reny (2015)
or Theorem 3 in Kleiner et al. (2020).

12For a complete proof of this fact, see the proof of Proposition 1 in Kleiner et al. (2020). By “compact”
we mean compact in the L1 norm topology.

10



3 Buyer’s optimal procurement mechanisms

3.1 Buyer’s optimal interim allocation

In this subsection, we solve problem (5), and in Section 3.2 we identify a trading mech-

anism that implements the solution we find. To make sure that the monotonicity con-

straint holds, the ironing technique (Myerson, 1981; Toikka, 2011) may be required. Define

g̃(s) = g(F−1(s)), and let

G(s) :=

∫ s

0

g̃(x)dx,

and let G be the concave hull of G:

G(x) := sup{y : (x, y) ∈ co(G)},

where co(G) is the convex hull of the graph of G. Equivalently, G is the pointwise smallest

upper semicontinuous and concave function that lies above G (see, for example, Kamenica

and Gentzkow, 2011). Let g = G
′
.13 Adopting the convention that sup∅ = 0, we define

S := sup{s ∈ [0, 1] : g(s) ≥ 0}. (7)

Now we are ready to state the result that identifies the optimal interim allocation rule.

Theorem 1. If there exists a collection of disjoint intervals [si, s̄i) indexed by i ∈ I, where

[si, s̄i) ⊆ [0, S] for each i ∈ I, such that

• G is affine on [si, s̄i) for each i ∈ I, and

• G = G on [0, S]
/⋃

i∈I [si, si),

then the interim allocation

P̂ (s) =


(1− s)n−1 if s ∈ [0, S]

/⋃
i∈I [si, si) ,∫ si

si
(1−s)n−1 ds

si−si
if s ∈ [si, si) ,

0 if s ∈ (S, 1]

(8)

is optimal.

Theorem 1 follows from the results concerning maximizing linear functionals under a

majorization constraint in Appendix A; the proof is relegated to Appendix B.1. To grasp

13Because G is concave, it is differentiable almost everywhere. At points where it is not differentiable, we
define g as the right derivative.
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some intuition, consider an auxiliary problem

max
P̃∈Ωw(P̃ ∗)

∫ 1

0

g(s)P̃ (s) ds. (9)

Observe that for s > S, the ironed virtual surplus is negative, and thus it is not desirable for

the buyer to trade. Consequently, any solution P̆ of problem (9) must satisfy P̆ (s) = 0. For

s ≤ S; however, to maximize the objective, we would like to set P̃ higher at points that g

takes higher value. Then since g is decreasing, we want to set P̃ (s) larger when s is smaller.

We see from (3) that no P̃ ∈ Ωw(P̃ ∗) attains larger value than P̃ ∗ itself when s is small;

thus, P̃ ∗ solves the auxiliary problem (9). Moreover, on each [si, si), since G is affine, g is

constant, so only the mean of the interim allocation on that interval matters. Consequently,

putting

P̂ (s) = E
[
P̃ ∗(t)

∣∣ t ∈ [si, si)
]

=

∫ si
si

(1− s)n−1 ds

si − si

on [si, si) for each i ∈ I and let P̂ = P̃ ∗ otherwise would make P̂ a solution of (9). In fact,

if P̂ solves the auxiliary problem (9), it also solves the original problem if and only if it is

constant on [si, si) for each i = 1, . . . ,M .14 Therefore, interim allocation P̂ defined by (8)

solves problem (5), and is thus optimal.

Observe that ironing is required whenever the buyer’s virtual surplus function has an

increasing region, that is, there exists an interval (x, y) ⊆ [0, 1] such that g(q) is increasing on

(x, y). While it might be standard to assume that F/f is increasing (so −F/f is decreasing),

requiring that g(q) is decreasing on [0, 1] also imposes strong restrictions on v(q): roughly

speaking, the buyer’s marginal valuation of quality cannot be too high anywhere on the unit

interval.15 Therefore, in our problem, the ironing technique could be unavoidable because of

the nature of certain procurement settings.

3.2 Implementation

To find a buyer’s optimal procurement mechanism, we need to find some trading mechanisms

that implement the allocation rule the optimal interim allocation rule P̂ (s) that we identified

in Theorem 1. To gain some ideas on how to proceed, it is helpful to look at the two most

straightforward cases: the virtual surplus g is either increasing or decreasing. In fact, the

14This is the pooling property of Myerson (1981) and Toikka (2011); it states that for all open intervals
I ⊆ [0, 1], H(s) < H(s) for all s ∈ I implies that P̂ must be constant on I.

15If we further assume that both v and f are differentiable, g(q) is decreasing if and only if v′(q) ≤
1 + (F (q)/f(q))′ for all q ∈ [0, 1]. For example, when qualities are uniformly distributed on [0, 1], g(q) is
decreasing if and only if v′(q) ≤ 2 for all q ∈ [0, 1].
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optimal mechanisms in these two cases are going to be the building blocks of our (general)

optimal trading mechanism.

If g is increasing, so is g̃;16 consequently, G is affine on the entire unit interval. Then

whenever S > 0, Theorem 1 implies that the solution to problem (5) is a constant function

P̂ =

∫ 1

0

P̃ ∗(s) ds = 1/n,

and P̂ = 0 otherwise. The optimal interim allocation, in this case, can be implemented by

a take-it-or-leave-it offer of 1 to an arbitrarily selected seller: each seller is selected with

probability 1/n, and whenever a seller is selected, she sells her good with probability 1.

If instead g is decreasing, we must have g̃ = g by construction. Again by Theorem 1, an

optimal interim allocation is

P̂ (s) =

{
(1− s)n−1 if s ≤ S,

0 otherwise,

which can be implemented by a second-price (procurement) auction with a reserve price

F−1(S): in equilibrium, a seller with quality quantile s bids her quality q = F−1(s), and she

sells her good if and only if all other n− 1 sellers’ qualities are above q. If all bids are above

F−1(S), the buyer does not procure from any of the potential sellers.

The discussion above is summarized in Proposition 1; these results essentially replicate

the symmetric and buyer’s optimal case of Corollary 2 and 3 of Manelli and Vincent (1995).

Proposition 1. Suppose S > 0, so trade can be mutually beneficial under incomplete infor-

mation, then

(1) if g is increasing, then a take-it-or-leave-it offer of 1 to a random seller is optimal;

(2) if g is decreasing, then a second-price auction with reserve price F−1(S) is optimal.

Note that the virtual surplus g(q) = v(q)−q−F (q)/f(q) measures the difference between

the buyer’s valuation and the procurement cost. For cleaner intuition, let us assume for now

that both v(q) and q + F (q)/f(q) are increasing on [0, 1].17 While a procurement auction

exploits competition among potential sellers, the competition based solely on price selects the

seller with the lowest quality. If the buyer’s virtual surplus is decreasing in quality, her cost

16Since f > 0, F is strictly increasing, and so is F−1; hence monotonicity of g is equivalent to monotonicity
of g̃.

17Proposition 1 holds without these assumptions. It is reasonable, though, to assume that the buyer’s
valuation is increasing in quality, and the other assumption is rather standard.
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of procurement decreases more than valuation when selecting a seller with lower quality, in

which case an auction is indeed optimal. If the buyer’s virtual surplus is increasing; however,

procuring from the seller selected by an auction becomes highly undesirable. This is because

when quality decreases, the valuation decreases more than the cost of procurement. A take-

it-or-leave-it offer to a randomly selected seller is optimal in this case since by doing this the

buyer can completely avoid competition among sellers.

Example 1 (Che, 2008). Suppose there are two sellers each with quality q drawn indepen-

dently and uniformly from [0, 1],18 and the buyer’s valuation function is v(q) = 3q. Then

g(q) = v(q)−q−q = q, and g(q) = 1/2 for all q ∈ [0, 1].19 Consequently, the optimal interim

allocation is

P̂ =

∫ 1

0

(1− q) dq = 1/2;

so it is optimal for the buyer to randomly select a seller and tender a take-it-or-leave-it offer

of 1. The resulting expected buyer’s payoff is 1/2, while a standard auction only yields 1/3

for the buyer in expectation.20 ♦

If the buyer’s valuation does not directly depend on the quality, so v(q) = v, for an

auction to be optimal, it suffices to assume that F/f is increasing, which is a rather standard

assumption in the mechanism design literature. In our problem; however, the shape of v(q)

also matters, and it is pinned down by the nature of the procurement problem. In particular,

for an auction to be optimal, it suffices to further assume that the buyer values marginal

quality less than the potential sellers.

Corollary 1. Suppose S > 0, v(q)− q is decreasing, F is twice continuously differentiable,

and both F and 1−F are log-concave,21 then a second-price auction with reserve price F−1(S)

is optimal.

Proof. Since both F and 1−F are log-concave, −F (q)/f(q) must be decreasing.22 Then g can

be written as the sum of two decreasing functions, hence also decreasing. By Proposition 1,

a second-price auction with reserve price F−1(S) is always optimal.

18When the qualities are uniformly distributed, we have s = q; in such cases, we do not need the change-
of-variables—we iron g directly.

19To get g, we first calculate G(q) =
∫ 1

0
g(q) dq = q2/2. Then since G is strictly convex on [0, 1], its concave

hull is obtained by “connecting” (0, G(0)) and (1, G(1)): we get G(q) = q/2. Hence, g(q) = G
′
(q) = 1/2.

20Let us consider a second-price auction: the sellers bid their qualities, and the buyer procures
from the winning seller and pays the bid of the losing seller. So the buyer’s expected payoff is
E [3 min{q1, q2} −max{q1, q2}] = 3E [min{q1, q2}]− E [max{q1, q2}] = 3(1/3)− 2/3 = 1/3.

21By Theorem 1 and Theorem 3 in Bagnoli and Bergstrom (2005), a sufficient condition for F and 1− F
being log-concave is that f is log-concave.

22To see this, differentiate to obtain (−F/f)′ = −1 − (−Ff ′/f2). When f ′(q) ≤ 0, because 1 − F is
log-concave, −Ff ′/f2 ≥ (1− F )f ′/f2 ≥ −1; and if f ′(q) > 0, −Ff ′/f2 ≥ −1 since F is log-concave. Thus,
(−F/f)′ ≤ 0.
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The next step we take is to understand the “simplest combinations” of the two most

straightforward cases we studied above. The natural candidates are that g is either single-

peaked or single-dipped. Proposition 2 and Proposition 3 concern these two cases, respec-

tively.

Proposition 2. Suppose g is single-peaked, that is, there exists q̆ ∈ [0, 1] such that g is

increasing on [0, q̆] and decreasing on [q̆, 1]. Then there exists ŝ ∈ [0, 1] such that g(s) is

constant on [0, ŝ] and decreasing on [ŝ, 1]. If S > 0, the following trading mechanism is

optimal:

• randomly label the sellers to be Seller 1, . . . , n;

• after that, a take-it-or-leave-it offer p1 is made to Seller 1;

• if it is rejected by Seller 1, a take-it-or-leave-it offer p2 > p1 is made to Seller 2;

• . . . ;

• if it is rejected by Seller n− 1, a take-it-or-leave-it offer pn > pn−1 is made to Seller n;

• if again rejected, a second-price auction with reserve price F−1(S) is conducted.

Proof. The statement on the shape of the ironed quantile virtual surplus g follows since g

is single-peaked: the quantile virtual surplus g̃ is thus increasing on [0, F (q̆)] and decreasing

on [F (q̆), 1]. Consequently, G is convex on [0, F (q̆)] and concave on [F (q̆), 1]; so by taking

the concave hull, the “lower part” must be affine. More specifically, it suffices to set

ŝ = sup
{
s ∈ [0, 1] : G(s) > G(s)

}
;

so G is affine on [0, ŝ] and coincides with G otherwise.

Then the shape of g implies that if S > 0, then S ≥ ŝ; hence by Theorem 1 the optimal

interim allocation takes the form of

P̂ (s) =


∫ ŝ
0 (1−s)n−1ds

ŝ
if s ≤ ŝ,

(1− s)n−1 if ŝ < s ≤ S,

0 if s > S.

(10)

In Appendix B.2 we construct sequential offers p1, p2, . . . , pn such that the following

strategy is an equilibrium of this game: sellers with valuations q ≤ F−1(ŝ) accept the take-

it-or-leave-it offer whenever it is tendered to her; and if an auction is conducted, all sellers

submit a bid equals to her valuation.23

23Note that an auction is only conducted if no seller has q ≤ F−1(ŝ).
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In equilibrium, the seller who is labeled as Seller 1 gets the offer for sure, and Seller 2

gets the offer with probability 1− ŝ, since this event only happens if Seller 1’s type is above

F−1(ŝ); and Seller 3 gets the offer with probability (1 − ŝ)2, and so on. Then the average

probability before the draw is∑n
j=1(1− ŝ)j−1

n
=

1− (1− ŝ)n

nŝ
=

∫ ŝ
0

(1− s)n−1 ds

ŝ
, (11)

where the first equality follows from the algebraic identity

an − bn = (a− b)
n∑
k=1

ak−1bn−1−k;

set a = 1− ŝ and b = 1 and rearrange, we get the desired expression. Therefore, the interim

allocation of the trading mechanism is exactly (10).

To understand Proposition 2, it is useful to consider the hypothetical situation where

each seller’s quality is in [F−1(ŝ), 1] first. Following the same argument as the paragraph

just before Proposition 1, we see that P̂
∣∣
[ŝ,1]

can be implemented by an auction with re-

serve price F−1(S).24 In particular, this reserve price guarantees that all sellers with q ∈
[F−1(ŝ), F−1(S)] submit a bid, and no seller with q > F−1(S) wants to participate in the

auction.

Now consider the entire interval [0, 1]. Because P̂ is constant on [0, ŝ], given part (1) of

Proposition 1, intuitively it should be optimal to make sellers with q ≤ F−1(ŝ) willing to

accept an offer, and let other sellers bid in an auction. Importantly, if a seller turns down the

offer made to her, which means that this seller has q > F−1(ŝ), the buyer should approach

other sellers sequentially until either a seller accepts an offer or all sellers turn the offers

down. Only in the latter case, the buyer should conduct an auction since she is assured that

none of the potential sellers have q ≤ F−1(ŝ), so the argument in the previous paragraph

applies.

Because the potential sellers are symmetric, it is natural to consider randomly labeling

them to be Seller 1, 2, . . . , n. Then we can “calibrate” the offers such that for each seller,

no matter what number she gets (1, 2, . . . , n), takes the offer when she has q ∈ [0, F−1(ŝ)],

and chooses to wait for the potential opportunity of bidding in the auction otherwise. Im-

portantly, for any Seller j and k with j < k, we must have pj < pk since Seller j knows that

if she turns the offer pj down, there are more potential sellers “waiting ahead”, so there is

a smaller probability that she would have the chance to participate in the auction. Indeed,

24For a function f : [0, 1]→ R and [a, b] ⊆ [0, 1], we denote the restriction of f to [a, b] by f
∣∣
[a,b]

.
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(11) shows that the interim allocation probability of any seller with q ∈ [0, F−1(ŝ)] is exactly

given by P̂ (s) =
∫ ŝ

0
(1− s)n−1 ds

/
ŝ.

Although the assumption that g is single-peaked can be restrictive, Proposition 2 is useful

in many economically meaningful environments. Lemma 3 in Online Appendix D identifies

a set of conditions on primitives that guarantees that g is single-peaked. In particular, if the

buyer’s marginal valuation of quality is (weakly) diminishing, and the quality distribution

satisfies an easy-to-check condition, we can show that g is single-peaked.

Corollary 2. Suppose v(q) is concave, and F/f is convex in q, then g(q) is single-peaked.

Consequently, if S > 0, the optimal interim allocation can be implemented by a round of

sequential offers followed by an auction.

Proof. Note that both v(q)− q and −F (q)/f(q) are concave under our assumptions, so their

sum g(q) is also concave and hence single-peaked. The last assertion follows directly from

Proposition 2.

The assumption on quality distribution in Corollary 2 might not be standard, but it is

satisfied by many familiar distributions with bounded supports, including power distribu-

tions,25 (truncated) exponential distributions, and Beta distributions with both parameters

greater than or equal to 1.

Example 2 (Diminishing marginal valuation). Suppose v(q) = −2q2+4q, and q is uniformly

distributed on [0, 1]; for simplicity assume that there are two potential sellers. Then g(q) =

v(q)− 2q = −2q2 + 2q, which is single-peaked; the ironed virtual surplus g is flat on [0,3/4]

and coincides with g on [3/4, 1]. g and g are plotted in Figure 2a. So by Theorem 1, the

optimal interim allocation is given by

P̂ (q) =

5/8 if q ≤ 3/4,

1− q if q > 3/4,

which is shown in Figure 2b. Then by Proposition 2, the following trading mechanism is

optimal:

• randomly label the sellers to be Seller 1 and Seller 2;

• a take-it-or-leave-it offer p1 = 0.78 is made to Seller 1;

• if it is rejected by Seller 1, a take-it-or-leave-it offer p2 = 0.88 is made to Seller 2;

25The CDF of a power distribution takes the form of F (x) = xα, where α > 0. When α = 1, we get the
uniform distribution.
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• if it is rejected by Seller 2, a second-price auction without a reserve price is conducted.

Observe that p1 < p2: this is because when Seller 1 rejects the offer made to her, she antici-

pates that the auction happens with probability 1/4, but Seller 2 knows that by rejecting the

offer the auction occurs with probability 1. Therefore, it is “more difficult” to make Seller 2

prefer accepting the offer than Seller 1. ♦

O q1

g(q)

g(q)

0.750.5

0.5

(a)

O q

P ∗(q) = 1− q

5/8

P̂ (q)

0.75 1

1

(b)

Figure 2: In panel (a), the blue curve is the buyer’s virtual surplus g(q), and the orange curve
is the ironed virtual surplus g; and in panel (b), the blue curve is P ∗(q) = 1 − q that appears in
Border’s condition, and the red curve is the optimal interim allocation P̂ (q).

Proposition 3. Suppose g is continuous and single-dipped, that is, there exists q̂ ∈ [0, 1]

such that g is decreasing on [0, q̂] and increasing on [q̂, 1]. Then there exists s̃ ∈ [0, 1] such

that g(s) is decreasing on [0, s̃] and constant on [s̃, 1]. If S > 0, and suppose 0 < s̃ < S,26

then it is optimal to run a second-price auction with a reserve price R < 1 first, and if no

one meets the reserve price, a take-it-or-leave-it offer of 1 would be tendered to an arbitrarily

selected seller.

Since g is single-dipped, the quantile virtual surplus g̃ must be decreasing on [0, F (q̂)]

and increasing on [F (q̂), 1]. Consequently, G is concave-convex, so by taking the concave

hull, an “upper part” must be affine. Let s̃ be defined by

s̃ = inf
{
s ∈ [0, 1] : G(s) > G(s)

}
,

so G coincide with G on [0, s̃] and it is affine otherwise. Recall that we define S as the

highest quantile that g is strictly positive (see Equation (7)). The shape of g implies that if

26By Proposition 1, if s̃ = 0, g is flat, so a take-it-or-leave-it offer of 1 to an arbitrarily selected seller is
optimal; and if s̃ ≥ S, a second-price auction with a reserve price F−1(S) is optimal.
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S ≥ s̃ > 0, then S = 1; hence the optimal interim allocation is

P̂ (s) =

{
(1− s)n−1 if s ≤ s̃,∫ 1
s̃ (1−s)n−1ds

1−s̃ otherwise.
(12)

The proof of optimality of the trading mechanism listed in Proposition 3 is relegated to

Appendix B.3. It proceeds in a similar way to the proof of Proposition 2: instead of choosing

the right prices offered in the sequential offer phase, the “key choice variable” in this proof

is the reservation price of the auction. We show that a carefully chosen reservation price

makes all sellers with quality quantile less than s̃ prefer to participate in the auction, and

all sellers with quality quantile greater than s̃ to wait for the chance of an offer. Therefore,

the trading mechanism proposed in Proposition 3 implements the optimal interim allocation

(12).

Since we are able to find the buyer’s optimal mechanism when g has one “peak” or

“trough”, it is natural to ask if we can use the techniques developed above to tackle a large

class of problems, where g has finitely many peaks and troughs. The answer is yes.

A function h is said to be regular if there exists a finite partition of [0, 1] into intervals

such that h is either increasing or decreasing on each of the partition elements. If h is

differentiable, then it is regular if and only if it changes sign a finite number of times.

Regularity, as defined above, formalizes the intuitive idea of finitely many “peaks” and

“troughs”. Theorem 2 shows that a buyer’s optimal procurement mechanism can always

be implemented by alternating between sequential offers and second-price auctions (with

reserve prices whenever necessary).

Theorem 2. Suppose the virtual surplus g is regular, and S > 0. Then the buyer’s optimal

interim allocation rule we identified in Theorem 1 can be implemented by a dynamic trading

mechanism combining second-price auctions (with a reserve price whenever necessary) and

sequential take-it-or-leave-it offers is optimal.

Suppose S > 0. Because g is regular, we can find a partition of [0, 1] into intervals

such that g is either increasing or decreasing on each of the K < ∞ partition elements.

By Theorem 1, there are M ≤ K pooling intervals, on each of which the optimal interim

allocation rule P̂ is constant and nonzero; and there are L ≤ M + 1 intervals on which

P̂ = P̃ ∗ = (1−s)n, we call them “non-pooling intervals”. Therefore, [0, S] can be partitioned

into M + L disjoint intervals, where P̂ is either constant or equals to P̃ ∗ on each of them.

In Appendix B.4 we show that, by carefully choosing the offer prices and reserve prices for

the auctions, we can find a trading mechanism with L rounds of auctions and M rounds of

sequential offers.
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Take-it-or-leave-it offers are used if and only if the virtual surplus has an increasing

region: in this region, the buyer has strong quality concerns; and by utilizing a pooling

interval containing this region, she mitigates such concerns by abandoning price competition

completely. Specifically, she tailors a set of offers such that only sellers in this interval

would accept. On non-pooling intervals; however, auctions can be efficiently used: the

buyer leverages competition from the sellers to maximize her payoff; reserve prices are set so

that only sellers whose qualities fall into a certain non-pooling interval participate. Loosely

speaking, it is optimal to “locally replace” auction with offers in the regions where quality

concerns are strong and use auctions otherwise. It is worth noting that, in our problem,

ironing is not just a technical curiosity: it helps us to determine the cutoff qualities that

the buyer should optimally switch between auction and offers, namely the boundary points

between pooling and non-pooling intervals.

To find the optimal offer prices and reserve prices, we start from the “last” of the M +L

intervals and reason backward. To simplify the argument, assume S = 1; and for concrete-

ness, let us focus on the special case shown in Figure 3. Since the last interval [sM , 1] is a

pooling interval, the buyer can randomly select a seller and render a take-it-or-leave-it offer

of 1; any seller whose quality quantile falls in this interval would accept this offer. To imple-

ment an auction on the non-pooling penultimate interval [sM−1, sM ], the buyer can choose

a reserve price like in Proposition 3 so that all sellers with quality quantile in [0, sM ] would

prefer to bid in this auction than wait for the chance of a take-it-or-leave-it offer of 1, and

the other way around for s ∈ (sM , 1]. For the third to last interval [sM−1, sM−1], which is a

pooling interval, the buyer can design a sequential offer scheme like in Proposition 2, so that

regardless of the order of being offered, any seller with s ∈ [0, sM−1] would prefer to take

the offer, and all sellers with s ∈ (sM−1] would prefer to wait for the subsequent chances of

an auction and the final offer. Proceed inductively, we can find a sequence of auctions and

sequential offers that implements the optimal interim allocation. In the proof, we show that

this special case can be modified to cover all other cases.

0 s1

P

s1

NP

sM−2

NP

sM−1

P

sM−1

NP

sM

P

S = 1

Figure 3: A possible case of the “first two” and the “last four” partition elements where S = 1.
“P” and “NP” means that the partition element is a pooling interval and a non-pooling interval,
respectively.

Although the rapid development of technologies significantly reduces the “transaction
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cost” of holding auctions and making sequential offers,27 it is worth pointing out that the

purpose of Theorem 2 is not to endorse a long sequence of alternating auctions and sequential

offers. Instead, Theorem 2 allows us to identify an optimal trading mechanism for some

procurement settings with more complicated curvatures caused by the nature of the buyer’s

preferences or quality distribution. For example, if the valuation function v(q) is S-shaped

or inverse S-shaped, then for some quality distributions (say uniform distribution), g(q) can

have one peak and one trough.28 In real-world applications, it is difficult to find circumstances

where the virtual surplus g goes up and down very often, so it is unlikely that a “long

sequence” is ever needed.

4 Socially optimal procurement mechanisms

In this section, we show that, under certain regularity conditions, a socially optimal pro-

curement mechanism can also be implemented by alternately utilizing sequential offers and

auctions. In Section 4.1 we solve problem (6) to get a socially optimal interim allocation,

and we discuss how to implement it in Section 4.2. All proofs in this section are relegated

to the Online Appendix C.

4.1 Socially optimal interim allocation

To solve problem (6), we set up the Lagrangian with multiplier λ:

L =

∫ 1

0

[
h̃(s) + λg̃(s)

]
P̃ (s) ds,

where h̃(s) = h(F−1(s)) is the quantile social surplus. We define φ(q;λ) = h(q) +λg(q), and

let φ̃(s;λ) = φ(F−1(s);λ). Evidently, φ̃(s;λ) = h̃(s) + λg̃(s), which is the quantile “virtual

surplus” of the Lagrangian.

We solve the problem by maximizing the Lagrangian over all P̃ ∈ Ωw(P̃ ∗), and then

find an appropriate Lagrangian multiplier such that the complimentary slackness condition

holds. More specifically, we iron φ(s;λ) to make sure that the monotonicity constraint holds:

27For example, in recent years many procurement processes are completed via online platforms.
28By “S-shaped” we mean that the marginal valuation is smaller for low and high qualities, but larger for

intermediate qualities, and by interchanging “smaller” and “larger” we get an inverse S-shaped valuation
function. The valuation function can be S-shaped if below some quality threshold it is constant in quality
(say the quality is “unacceptable” in that case), and strictly concave above the threshold. It can be inverse
S shaped if, for instance, we modify the valuation function in Figure 1b so that there is a flat part between
the two increasing pieces; this can happen if there is a “gap” between the two markets: intermediate quality
input might be too good for the low-end market but not good enough for the high-end market.
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let

Φ(s;λ) :=

∫ s

0

φ̃(s;λ) dx;

consequently,

φ(s;λ) =
∂

∂s
Φ(s;λ)

is the ironed quantile “virtual surplus” of the Lagrangian. Similar to Theorem 1, for all s

such that φ(s;λ) > 0, the socially optimal interim allocation P̂ is flat whenever ironing is

needed, and coincide with P̃ ∗(s) = (1− s)n−1 otherwise. If there exists an interval [a, b] on

which φ(s;λ) = 0, we may need to find some P satisfying

0 ≤ P ≤
∫ b
a
(1− s)n−1 ds

b− a

and set P̂ (s) = P on [a, b] to satisfy complementary slackness; the second inequality in the

above expression is necessary because Border’s condition requires P̂ ≺w P̃ ∗.

Theorem 3. If there exist λ∗ ≥ 0, 0 ≤ a ≤ b ≤ 1 and b > 0, and a collection of disjoint

intervals [si, s̄i) indexed by i ∈ I, where [si, s̄i) ⊆ [0, a], such that

(i) a = sup
{
s ∈ [0, 1] : φ(s;λ∗) > 0

}
and b = sup

{
s ∈ [0, 1] : φ(s;λ∗) ≥ 0

}
;

(ii) Φ(s;λ∗) is affine on [si, s̄i) for each i ∈ I and [a, b), and

(iii) Φ(s;λ∗) = Φ(s;λ∗) on [0, a]
/⋃

i∈I [si, si),

then the interim allocation

P̂ (s) =


(1− s)n−1 if s ∈ [0, a]

/⋃
i∈J [si, si)∫ si

si
(1−s)n−1ds

si−si
if s ∈ [si, si)

P if s ∈ (a, b]

0 if s ∈ (b, 1]

satisfying the complementary slackness condition

λ∗
∫ 1

0

g̃(s)P̂ (s) ds = 0

is optimal.
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4.2 Implementation

Observe that if the optimal interim allocation P̂ satisfies a = b, it can be implemented in

a similar manner as the buyer’s optimal case we discussed in Section 3.2. If instead a < b,

what we can do is just implement as before when s ≤ a, and if no potential seller accepts an

offer or participates in an auction in these rounds, we know that each of them has quality

quantile s > a. At this point, the procurement process ends directly without further rounds

with probability

1− P∫ b
a
(1− s)n−1 ds

/
(b− a)

,

so the buyer does not procure from any of the potential sellers. With complementary prob-

ability, another round of sequential offers is tendered, where all sellers with s ∈ (a, b] would

like to accept an offer and others opt out; the procurement process ends after this round.

We summarize the discussion above in Theorem 4.

Theorem 4. Let λ∗ be the Lagrangian multiplier associated with the socially optimal interim

allocation we identified in Theorem 3. Suppose φ(q;λ∗) = h(q) + λ∗g(q) is regular, then a

dynamic trading mechanism combining second-price auctions (with a reserve price whenever

necessary) and sequential take-it-or-leave-it offers is optimal.

Corollary 3 and Corollary 4, which are the socially optimal counterparts of Corollary 1

and Corollary 2, identify environments in which φ(q; ·) is strictly decreasing and single-peaked

for all λ∗ ≥ 0, respectively. Consequently, some simple trading mechanisms are optimal in

these cases.

Corollary 3. Assume the social surplus from trade h(q) = v(q)−q is strictly decreasing, and

f is continuously differentiable and log-concave. Then if s̃ > 0, one round of second-price

auction is socially optimal.

Corollary 4. Suppose v(q) is increasing and concave, and F/f is convex in q, then φ(q;λ∗)

is single-peaked for all λ∗ ≥ 0. Consequently,

• if there do not exist 0 < a < b ≤ 1 such that φ(·;λ∗) = 0 on [a, b], the optimal interim

allocation can be implemented either by sequential offers, or by a round of sequential

offers followed by an auction;

• otherwise, another round of sequential offers might have to be made with positive prob-

ability if no one bids in the auction.
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5 Discussion

5.1 The assumption on the sellers’ cost

We assume that a seller’s cost, or her reservation value, is identical to her quality. While it

need not be completely without loss, we believe that it is safe to say that this assumption

is innocuous: suppose a seller’s cost is given by c(q), where q is her quality, we can redefine

the buyer’s virtual surplus as g(q) = v(q) − c(q) − F (q)/f(q) and our analysis still goes

through; so our main insights do not rely on this assumption. Furthermore, as we will see in

Section 5.3, this assumption allows us to conveniently interpret sellers’ private information

as either quality or cost/reservation value, which expands the applicability of our analysis.

5.2 More general objective functions

The main takeaway that the optimal trading mechanism is a dynamic combination of auction

and negotiation continues to hold if the objective is any weighted average of the buyer’s payoff

and the social surplus. To see this, denote the weight on the buyer’s payoff by γ ∈ [0, 1]; the

optimization problem is

max
{ps}ns=1

n∑
s=1

∫ 1

0

[
v (qs)− qs − γ

F (qs)

f(qs)

]
ps(q)fn(q) dq

subject to (F)

Ps(·) is decreasing for each s = 1, . . . , n
n∑
s=1

∫ 1

0

[
v (qs)− qs −

F (qs)

f (qs)

]
ps(q)fn(q) dq ≥ 0.

Letting hγ(q) := v(q) − q − γ[F (q)/f(q)], the optimal quantile interim allocation can be

found by solving

max
P̃∈Ωw(P̃ ∗)

∫ 1

0

hγ(F
−1(s))P̃ (s) ds

s.t.

∫ 1

0

g(F−1(s))P̃ (s) ds ≥ 0.

Now proceed like in Section 4.1 and Section 4.2 by simply replacing h by hγ, we can show

that an analog of Theorem 4 holds.
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5.3 Stochastic valuation

In the main model, the buyer’s valuation is assumed to be a deterministic function of the

sellers’ quality. In many relevant applications; however, it is natural to assume that the

buyer’s valuation is a random variable.29 For concreteness, consider a buyer who would like

to contract with one of several potential suppliers to develop a new project, for example, a

new weapon or a production line. The cost of supplier s, cs ∈ [0, 1], is her private information;

and the buyer believes that cs’s are independently and identically distributed according to

a continuous density function fC(·). The project’s value is not perfectly revealed to the

buyer until the end of the development phase at the earliest, which is long after penning

the contract. Consequently, at the time of contracting the buyer’s valuation is a random

variable Ξ. We assume that the realization of Ξ, ξ ∈ [ξ, ξ], is not contractable. The buyer

believes that Ξ and C are correlated, and that the conditional distribution of Ξ is fΞ |C(·|c).
One reasonable assumption about the two random variables Ξ and C can be that they are

positively affiliated, or equivalently MTP2 (Karlin and Rinott, 1980; see also Milgrom and

Weber, 1982).

Let c = (c1, . . . , cn). Given a direct mechanism {ps(c), ts(c)}ns=1, where for each cost

profile c, ps(c) specifies the probability that the buyer contracts with supplier s, and ts(c) is

the transfer that the buyer pays to supplier s, the principal’s expected payoff can be written

as

πb =
n∑
s=1

∫
[0,1]n

[∫ ξ

ξ

(ξ ps(c)− ts(c))fΞ |Q(ξ|cs) dξ

]
fn(q) dc

=
n∑
s=1

∫
[0,1]n

[(∫ ξ

ξ

ξfΞ |Q(ξ|cs) dξ

)
ps(c)− ts(c)

]
fn(c) dc

=
n∑
s=1

∫
[0,1]n

(E[Ξ |Q = cs] ps(c)− ts(c)) fn(c) dc.

If we define v(cs) := E[Ξ |C = cs], we see from (1) that the problem here is identical to

the procurement problem we study above, and the curvature of v(cs) is governed by the

conditional distribution. For example, if Ξ and C are positively affiliated, v(·) is increasing.

Example 3. A manufacturer would like to procure a machine for production. For simplicity,

suppose that her valuation is identical to the durability of the machine. She believes that

the two potential sellers’ costs are identically, independently, and uniformly distributed.

Conditional on the cost realization c, her valuation Ξ is distributed according to a Pareto

29For conciseness, in Sections 5.3 and 5.4 we only discuss the buyer’s optimal design problem; extending
the analysis to the socially optimal design problem is straightforward.
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distribution with scale 0.5 and shape 2.2− c.30 Consequently,

v(c) = E[Ξ |C = c] =
1.1− 0.5c

1.2− c
,

and g(c) = v(c) − 2c. We plot g and g in Figure 4a. By Theorem 1, the optimal interim

allocation is given by

P̂ (c) =

{
1− c c < 0.48,

0.26 c ≥ 0.48,

which is shown in Figure 4b. Then by Proposition 3, the following trading mechanism is

optimal:

• conduct a second-price auction with reserve price (1 + 0.48)/2 = 0.74;

• make a take-it-or-leave-it offer of 1 to an arbitrarily selected seller if no bid meets the

reserve price. ♦

O q1

g(q)
g(q)

0.48

(a)

O q

P ∗(q) = 1− q

0.26

P̂ (q)

0.293 1

1

(b)

Figure 4: In panel (a), the blue curve is the buyer’s quantile virtual surplus g̃, and the orange
curve is the ironed quantile virtual surplus g; and in panel (b), the blue curve is P ∗(q) = 1− q that
appears in Border’s condition, and the orange curve is the optimal interim allocation P̂ (q).

5.4 Procuring information services

Our framework can also be applied to study the procurement of information services, exam-

ples of which include clinical trials and market research. The buyer faces a decision problem

under uncertainty: there is a binary payoff-relevant state ω ∈ Ω = {0, 1};31 the buyer’s prior

30The scale parameter can be interpreted as the length of the machine’s warranty.
31One can interpret ω = 1 as the “good” state and ω = 0 is the “bad” state.
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belief is γ = P(ω = 1) ∈ [0, 1]. She has to take an action a ∈ {S,R}, and her payoff is

summarized in the matrix
u(a, ω) S R

ω = 0 0 θ0

ω = 1 0 θ1

where θ0 < 0 < θ1.32 Without additional information, the buyer’s expected payoff is V (γ) =

max{0, γθ1 + (1− γ)θ0}.
We model information services by (Blackwell) experiments. An experiment generates

two possible signals, {`, h}; one can interpret s = ` as a recommendation for action S, and

s = h is an recommendation for action R. A supplier’s quality is her private information; it

may summarize, for example, the ability and experiences of its investment team members,

(for the clinical research example) the quality of lab facilities, or (for the market research

example) the quantity and quality of the data sets it has access to, among many others.

The buyer believes that the qualities of the potential suppliers, qs’s are independently and

identically distributed, and a supplier with quality qs offers an experiment

s = ` s = h

ω = 0 κ0(qs) 1− κ0(qs)

ω = 1 1− κ1(qs) κ1(qs)

where κ0, κ1 : [0, 1] → [1/2, 1].33 We assume that the buyer’s payment cannot be made

contingent on the realized signal.

Having access to any experiment from a supplier with quality qs, the buyer with prior γ

observes a signal, updates her beliefs, and then chooses an action; so her expected payoff is

Vγ(qs) = γκ1(qs)θ1 + (1− γ)(1− κ0(qs))θ0. (13)

Consequently, the incremental value of information for her is given by her expected payoff

32As is standard in the literature, S and R can be interpreted as “safe” and “risky” action, respectively.
33It is without loss of generality to assume that κ0 and κ1 maps a quality to a deterministic “success rate”:

suppose instead that the buyer believes the experiment offered can be written as

s = ` s = h
ω = 0 α0 1− α0

ω = 1 1− α1 α1

where α0 and α1 are random variables correlated to qs. Then we just let κ0(qs) := E[α0 |Q = qs], and
κ1(qs) := E[α1 |Q = qs]. Assuming that κ0(q) and κ1(q) are greater than or equal to 1/2 is just to make
sure that s = h is relatively more likely to occur under ω = 1 than ω = 1, so it can be interpreted as a
recommendation for action R.
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Vγ(qs) subtracting the value of prior information, that is,

Nγ(qs) = max{Vγ(qs)− V (γ), 0}. (14)

The maximum operator accounts for the case that the buyer’s expected payoff from the access

to the experiment, Vγ(qs), falls short of the prior value V (γ), in which case she “ignores”

the information provided by the experiment and chooses an action solely based on her prior.

Replacing v(qs) by Nγ(qs), as illustrated by Example 4, our results can be used to analyze

this problem.

Example 4. To test an experimental drug, a pharmaceutical company would like to contract

with one of three clinical trial service companies to run a treatment trial. The drug can be

either “good” (ω = 1) or “bad” (ω = 0),34 and the pharmaceutical company can choose either

to keep developing the drug (action R) or to terminate the development process (action S).

The pharmaceutical company’s prior is γ = 2/3, that is, the drug is good with probability

2/3; and let θ0 = −6, θ1 = 6. The clinical trial service companies’ qualities are uniformly

distributed. For a clinical trial service company with quality q, κ0(q) = 1/2 +
√
q/2, and

κ1(q) = 2/3 +
√
q/3. Then V (γ) = 2; so by (14),

N2/3(q) =

{
0 q < 1/49,

13
√
q/5− 3/5 q ≥ 1/49.

Consequently, the virtual surplus is g(q) = N2/3(q) − 2q; we plot it as well as its “ironed

version” in Figure 5a. We can find the optimal interim allocation by Theorem 1; see Figure 5b

for its graph. Then by Proposition 2, it is optimal to sequentially make offers to the three

clinical trial companies first, and if none of the offers is accepted, an auction (without a

reserve price) is conducted. ♦

It is useful to compare our setting to a recent paper that also studies “procuring experi-

ments”, Yoder (2020). In Yoder (2020), a researcher who is able to undertake experiments

plays the role of the only seller or supplier. The researcher’s private information, or type, is

the marginal cost of a more informative experiment. No matter what the researcher’s type

is, she is free to choose any experiment,35 and a more informative experiment is costlier to

her. In our framework; however, the lone feasible experiment of the supplier is pinned down

by her quality. An interesting possibility is to make the set of feasible experiments for the

34For example, a drug is “good” if it reaches some prespecified efficacy and safety levels, and it is “bad”
otherwise.

35Equivalently, the researcher is allowed to choose any distribution over posteriors whose mean is the prior.
See, for example, Kamenica and Gentzkow (2011).
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Figure 5: In panel (a), the blue curve is the buyer’s virtual surplus g(q), and the orange curve is
the ironed virtual surplus g; and in panel (b), the blue curve is P ∗(q) = (1 − q)2 that appears in
Border’s condition, and the red curve is the optimal interim allocation P̂ (q).

researcher dependent on her cost or quality, but she is allowed to use any experiment in her

feasible set. For example, one can assume that a researcher with a higher cost or quality can

conduct more informative experiments; that is, the “informativeness bound” is determined

by the researcher’s cost or quality.36 This problem; however, is beyond the scope of this

paper and thus left for future research.

6 Conclusion

We explored procurement design problems where the buyer’s valuation of the good supplied

depends directly on its quality, and the quality is both unverifiable and unobservable. We

analyzed both buyer’s payoff maximization and social surplus maximization problems. To

obtain the main results, we employed a reduced form approach, based on techniques on lin-

ear optimization under a majorization constraint. We found that in each of the problems,

the two commonly used procurement methods, namely auction and negotiation, are subop-

timal unless the virtual valuation is monotone. However, the optimal mechanisms can be

implemented by a dynamic combination of them.

An interesting question for future research is under what conditions either auction or

negotiation is “approximately optimal” in the sense that it captures a substantial portion

of the surplus achieved by the optimal mechanism. In such cases, one of the two common

procurement methods might be favored because of its simplicity.

36This assumption is reasonable in many applications. For example, a credit rating agency that makes
more precise predictions usually hires more experienced investigators, which leads to higher costs.
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Appendices

A Results on majorization

Denote the set of decreasing functions in L1(0, 1) that are majorized by f by

Ω(f) := {g ∈ L1(0, 1) : g is decreasing, g ≺ f};

similarly, denote the “weak majorization set” by

Ωw(f) := {g ∈ L1(0, 1) : g is decreasing, g ≺w f}.

The following results are taken from Kleiner et al. (2020) and modified to our environ-

ment. Let A be an arbitrary subset of a topological vector space, we denote the set of its

extreme points by extA.

Theorem 5 (Theorem 1 in Kleiner et al., 2020). Let f ∈ L1(0, 1) be decreasing. Then

h ∈ extΩ(f) if and only if there exists a collection of disjoint intervals [xi, xi) indexed by

i ∈ I such that for almost all x ∈ [0, 1],

h(x) =

 f(x) if x /∈
⋃
i∈I [xi, xi)∫ xi

xi
f(s)ds

xi−xi
if x ∈ [xi, xi) .

For B ⊆ [0, 1], denote by 1B(x) the indicator function of B: it equals 1 if x ∈ B and 0

otherwise.

Corollary 5 (Corollary 2 in Kleiner et al., 2020). Let f ∈ L1(0, 1) be decreasing. Then

h ∈ extΩw(f) if and only if there exists θ ∈ [0, 1] such that h ∈ extΩ(f · 1[0,θ]) and h(x) = 0

for almost all x ∈ (θ, 1].

Now consider the problem

max
m∈Ω(f)

∫ 1

0

c(x)r(x) dx, (15)

where f ∈ L1(0, 1) is strictly decreasing, and c is a bounded function. Define

C(x) =

∫ x

0

c(s) ds,

and let C be its concave hull. Proposition 4 characterizes a solution to problem (15).
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Proposition 4 (Proposition 2 in Kleiner et al., 2020). Let h ∈ extΩ(f), and let {[xi, x̄i) : i ∈ I}
be the collection of intervals described in Theorem 5. Then h is optimal if and only if C is

affine on [xi, x̄i) for each i ∈ I and C = C otherwise.

B Proofs for Section 3

B.1 Proof of Theorem 1

Because the objective function of problem (5) is linear, by Bauer’s maximum principle

(Aliprantis and Border (2006), Theorem 7.69, page 298), the maximum is attained at an

extreme point P̂ of Ωw(P̃ ∗). By Corollary 5, there exists s̄ ∈ [0, 1] such that P̂ is an extreme

point of Ω(P̃ ∗ · 1[0,s̄]) and equals zero on [s̄, 1]. Furthermore, the optimality of P̂ requires

that the type q̄ = F−1(s̄) must satisfy g(q̄) = 0; so setting s̄ = sup{s ∈ [0, 1] : g(s) ≥ 0} = S

suffices. Then Theorem 5 implies that P̂ must take the form of

P̂ (s) =


(1− s)n−1 if s ∈ [0, S]

/⋃
i∈I [si, si) ,∫ si

si
(1−s)n−1ds

si−si
if s ∈ [si, si) ,

0 if s ∈ (S, 1];

and by Proposition 4, the collection {[si, si) ⊆ [0, S] : i ∈ I} is pinned down by the intervals

that G is affine on.

B.2 Construction of prices and equilibrium in the proof of Propo-

sition 2

In what follows we construct p1, p2, . . . , pn such that the following strategy is an equilibrium

of this game: sellers with valuations q ≤ F−1(ŝ) accept the take-it-or-leave-it offer whenever

it is tendered to her; and if an auction is conducted, all sellers submit a bid equals to her

valuation.

To simplify notation, we let q̂ = F−1(ŝ); and for brevity of the proof, we assume S = 1:

to account for other cases, we only need to set a reserve price F−1(S) for the auction. Now

suppose all other potential sellers are expected to follow the strategy described above. For

each type q seller, if she enters the final auction, her expected revenue is

M(q) =

E
[
q(n−1)

∣∣ q(n−1) > q̂
]
− q if q < q̂,

P
(
q(n−1) > q

∣∣q(n−1) > q̂
) (

E
[
q(n−1)

∣∣ q(n−1) > q
]
− q
)

if q ≥ q̂;

31



where q(n−1) is the lowest of her n− 1 opponents’ types. By definition, M(q) + q is constant

on [0, q̂]; and for q > q̂,

M(q)+ q =
(1− F (q))n−1

(1− ŝ)n−1

[ ∫ 1

q
x dK(x)

(1− F (q))n−1
− q

]
+ q =

∫ 1

q
x dK(x)

(1− ŝ)n−1
+

(
1− (1− F (q))n−1

(1− ŝ)n−1

)
q,

where K is the distribution of q(n−1): K(x) = 1− (1− F (x))n−1. So for q > q̂,

d

dq
(M(q) + q) = −q(n− 1)f(q)(1− F (q))n−2

(1− ŝ)n−1
+

(
1− (1− F (q))n−1

(1− ŝ)n−1

)
+
q(n− 1)f(q)(1− F (q))n−2

(1− ŝ)n−1

=

(
1− (1− F (q))n−1

(1− ŝ)n−1

)
> 0,

which implies that M(q) + q is strictly increasing on (q̂, 1].

Consider Seller n first. She knows that if she rejects the offer pn, the auction occurs with

probability 1; so we let

pn − q̂ = M(q̂);

the properties of M(q) + q we discussed above imply that q ≤ q̂ would accept the offer and

wait for the auction otherwise. For Seller n−1, she knows that if she rejects the offer pn, the

auction occurs if and only if Seller n’s type is greater than q̂, which happens with probability

1− ŝ; so for type q̂ Seller n− 1 to be indifferent, we set

pn−1 − q̂ = (1− ŝ)M(q̂).

Following the reasoning above, for j = 1, . . . , n− 2, Seller j’s take-it-or-leave-it offer is

pj = F−1(ŝ) + (1− ŝ)n−jM(q̂).

By construction, p1 < p2 < · · · < pn−1 < pn. Consequently, a seller with type q < F−1(ŝ)

accepts the take-or-leave-it offer once it is tendered to her, and otherwise waits for the chance

of an auction.

B.3 Proof of Proposition 3 continued

Suppose S ≥ s̃ > 0, so S = 1 and (12) is the optimal interim allocation. Because S = 1, we

set the reserve price R such that type q̃ = F−1(s̃) seller is indifferent between bidding in the

auction and wait until the chance of being selected to get the offer of 1; more precisely, we
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set

R =
n− 1

n
q̃ +

1

n
< 1.

We claim that the following strategy is an equilibrium of this game: in the auction phase,

sellers with valuations q ≤ q̃ submit bids equal to their valuations; in the offer phase, all

sellers accept the take-it-or-leave-it offer of 1 when it is tendered to her. To see this, suppose

all other sellers follow this strategy. Then when a seller’s true quality is q, by bidding q′ ≤ q̃,

the expected revenue is∫ q̃

q′
(x− q) dK(x) + (1−K(q̃)) (R− q) =

∫ q̃

q′
(x− q) dK(x) + (1− s̃)n−1 (R− q) ,

where the second equality follows from the definition of K. If q ≤ q̃, the integral term above

is positive and achieves its maximum at q′ = q. By bidding q′ ∈ [q̃, R], the seller wins only

if q(n−1) ≥ q̃; in this case her expected revenue is

(1− s̃)n−1 (R− q) ;

and bidding q′ > R makes the seller never win. Thus, if a seller’s quality q ≤ q̃, it is optimal

for her to bid her true quality.

Observe that any seller with type q > R would prefer to wait for the chance of a take-

it-or-leave-it offer. For q ∈ [q̃, R], if she submits a bid in the auction, her expected payoff is

maximized at bidding q′ = q̃, which yields

(1− s̃)n−1 (R− q) ;

and if she does not, her expected payoff from the offer is

1

n
(1− s̃)n−1(1− q),

where (1 − s̃)n−1 is the probability that the game enters the offering phase, and 1/n is the

probability that an offer is tendered to her; if she receives an offer, she accepts it for sure,

which yields a payoff of 1−q. By definition of R, any seller with type q ≤ q̃ prefers to submit

a bid equal to her true quality in the auction, and a seller with q > q̃ would prefer to wait

for the chance of a take-it-or-leave-it offer.

Consequently, all types with q < F−1(s̃) make a bid in the auction, and otherwise wait

for a potential offer. It is then not difficult to see that the interim allocation of the trading
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mechanism, in this case, is exactly (12): in particular, on [s̃, 1],∫ 1

s̃
(1− s)n−1ds

1− s̃
=

(1− s̃)n−1

n
,

which is exactly the probability that a seller with quality quantile s ∈ [s̃, 1] receives a take-

it-or-leave-it offer (and this seller accepts with probability one).

B.4 Proof of Theorem 2

Like in the proof of Proposition 2, to simplify exposition, we let S = 1. The proof proceeds

as follows: we first design a sequence of sequential take-it-or-leave-it offers and second-price

auctions with reserve prices that induces an equilibriumof the game played by the sellers,

such that all seller types whose quantile falls in a pooling interval would accept some take-it-

or-leave-it offer that is designed for sellers in that interval, and all seller types whose quantile

falls in a non-pooling interval would submit a bid in a second-price auction that is designed

for sellers in that interval; then we show that the interim allocation rule induced by this

equilibrium coincides with P̂ .

In what follows we prove the theorem for a special case, and after that we show that

focusing on this case is in fact without loss of generality. We assume that

(1) pooling intervals and non-pooling intervals are alternating, that is, except for the

“last” interval, a pooling interval is always followed by a non-pooling interval, and a

non-pooling interval is always followed by a pooling interval;

(2) the first interval is a non-pooling interval, and the last interval is a pooling interval.

Since there are M pooling intervals, in this case, there are also M non-pooling intervals. We

claim that the following mechanism, with appropriately chosen offers and reserve prices, is

optimal:

• auction round 1: conduct a second-price auction with reserve price R(1) > 0;

• sequential offer round 1: randomly number the sellers from 1 to n, and sequentially

tender take-it-or-leave-it offer p
(1)
j to Seller j, j = 1, . . . , n, where p

(1)
1 < p

(1)
2 < · · · <

p
(1)
n ;

• auction round 2: conduct a second-price auction with reserve price R(2), where R(1) <

R(2);

34



• sequential offer round 2: randomly number the sellers from 1 to n, and sequentially

tender take-it-or-leave-it offer p
(2)
j to Seller j, j = 1, . . . , n, where p

(2)
1 < p

(2)
2 < · · · <

p
(2)
n ;

• . . . ;

• auction round M : conduct a second-price auction with reserve price R(M), where

R(M−2) < R(M−1) < 1;

• the final round: choose a seller at random and tender a take-it-or-leave-it offer of 1 to

her.

To prove this, we first show that an equilibrium of the game induced by the mechanism

we described above consists of the following strategies: for j = 1, . . . ,M − 1, sellers whose

quantiles are in j-th pooling interval only accept an offer from sequential offer round j, and

sellers whose quantiles are in k-th non-pooling interval only make bids equal to their qualities

in auction round k, k = 1, . . . ,M ; all sellers whose quantiles fall in the last pooling interval

only accept the final take-it-or-leave-it offer of 1.

To see this, suppose all other sellers follow the aforementioned strategies; we choose R(M)

like in the proof of Proposition 3, then if a seller’s quality quantile falls in the last pooling

interval [sM , 1],37 she prefers to wait for the chance of the final offer than to make a bid

in the M -th auction, and all other types prefer the M -th auction to the final offer. Next,

we set the n take-it-or-leave-it offers p
(M−1)
1 , p

(M−1)
2 , . . . , p

(M−1)
n in a similar manner as in the

proof of Proposition 2; so if a seller’s quality quantile is in the M −1-th non-pooling interval

[sM−1, sM), she prefers to wait for the possibilities of an auction and the final offer than to

accept an offer in the M − 1-th round of sequential offers, and if s ∈ [0, sM−1) she would

prefer the opposite. Then we let

R(M−1) = F−1(sM−1) +
1

n

n∑
k=1

(
1− sM−1

1− sM−1

)k−1 (
p

(M−1)
k − F−1(sM−1)

)
.

An argument analogous to the proof of Proposition 3 shows that for each seller with s ∈
[0, sM−1), it is optimal for her to bid her quality in the auction. Now consider a seller whose

quality quantile are in the M−1-th pooling interval, that is, s ∈ [sM−1, sM−1): if she submits

a bid in the M−1-th auction, her expected payoff is maximized by bidding F−1(sM−1), which

yields (
1− sM−1

1− sM−2

)n−1 (
R(M−1) − F−1(s)

)
,

37Note that in this case, we have sM = 1.
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where the first term is the probability that the buyer procures from her conditional on that

the M − 1-th auction is conducted, and the second term is the payoff when she wins; and if

she waits for the chance of getting into sequential offer round M − 1,38 her expected payoff

is (
1− sM−1

1− sM−2

)n−1
[

1

n

n∑
k=1

(
1− sM−1

1− sM−1

)k−1 (
p

(M−1)
k − F−1(s)

)]
. (16)

To understand (16), note that the term outside of the squared brackets is the probability

that no one wins the auction conditional on that the M −1-th auction is conducted, and the

squared bracket is her expected payoff in the M − 1-th round of sequential offers: if she is

labeled as Seller k, when an offer is tendered to her she gets p
(M−1)
k −F−1(s), which happens

only if all k − 1 sellers selected before her have quality quantile above sM−1. Define

Γ(M−1)(q) = q +
1

n

n∑
k=1

(
1− sM−1

1− sM−1

)k−1 (
p

(M−1)
k − q

)
;

Γ(M−1) is strictly increasing whenever sM−1 > sM−1 since

Γ′(M−1)(q) = 1− 1

n

n∑
k=1

(
1− sM−1

1− sM−1

)k−1

≥ 1− n

n

(
1− sM−1

1− sM−1

)
=

(
sM−1 − sM−1

1− sM−1

)
> 0;

then by definition of R(M−1), we see that all sellers with s ∈ [0, sM−1] prefer the M − 1-th

auction to the subsequent offers, and all sellers with s ∈ [sM−1, sM−1) prefer the opposite.

Proceed inductively, we can show that the proposed strategies indeed constitute an equilib-

rium.

Therefore, if a seller’s quality quantile s falls in a non-pooling interval, the only way

that the buyer procures from her is through a second-price auction, which implies that

the corresponding interim allocation she receives is P (s) = (1 − s)n−1: this is exactly the

probability that all other n− 1 sellers have higher quality. If her quality quantile s falls in a

pooling interval, say s ∈ [sj, sj) for some j ∈ {1, . . . ,M}, then the only way that the buyer

procures from her is through a take-it-or-leave-it offer, which implies that the corresponding

38Note that the seller would not want to wait even longer since we have shown that any s ∈ [0, sM−1)
prefers accepting an offer in sequential offer round M − 1 to waiting for any subsequent chances.
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interim allocation she receives is

P (s) =

∑n−1
k=0(1− sj)n−1−k(1− sj)k

n
. (17)

To understand (17), observe that if the seller is chosen as the k + 1-th seller, to make sure

that she sells the good to the buyer, we need all of the k sellers who get the offers before her

have quality higher than F−1(sj) (so that none of them accept the offer tendered to them in

this round) and the other n− 1− k sellers’ qualities are above F−1(sj) (so the procurement

mechanism does not stop before this round). Then by the algebraic identity

an − bn = (a− b)
n∑
k=1

ak−1bn−1−k,

letting a = (1− sj) and b = 1− sj we have∑n−1
k=0(1− sj)n−1−k(1− sj)k

n
=

(1− sj)n − (1− sj)n

n(sj − sj)
;

but by the fundamental theorem of calculus, the right-hand side is exactly∫ sj
sj

(1− s)n−1ds

sj − sj
.

Therefore, the equilibrium we proposed is consistent with the optimal interim allocation rule

identified in Theorem 1.

Now we argue that every other case can be seen as a simple variant of the special case

we analyzed. It is possible to have two consecutive pooling intervals, but based on our proof

below, we can always put a “vacuous auction” in between: the reserve price of that auction

is set to make sure that only the boundary point of the two consecutive pooling intervals

is indifferent between the first offer, the auction, and the second offer, and all other types

prefer an offer (either the first one or the second). Moreover, if the “first” interval is a

pooling interval, we can set the reserve price of the first auction round to be 0; and if the

“last” interval is a non-pooling interval, we can just set the reserve price of the last round

of auction to be 1.

Therefore, we conclude that whenever the virtual surplus has finitely many peaks and

troughs, any buyer’s optimal procurement mechanism can be implemented by a dynamic

trading scheme that alternates between take-it-or-leave-it offers and second-price auctions

with reserve prices.
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Online Appendix

C Proofs for Section 4

C.1 Proof of Theorem 3

Let

H(s) =

∫ s

0

h̃(x) dx and Φ(s;λ) =

∫ s

0

φ̃(s;λ) dx,

and let H and Φ be the concave hulls of H and Φ, respectively. We further define {[xi, xi)}i∈I
and {[y

i
, yi)}i∈J be the collections of intervals on which H and Φ are affine, respectively. Now

let

h(s) = H
′
(s), and φ(s;λ) =

∂

∂s
Φ(s;λ),

so h(s) and φ(s;λ) are the ironed quantile social surplus and the ironed quantile “virtual

surplus” of the Lagrangian, respectively. By construction, both of them are decreasing in s.

Define

S0 =
{
s ∈ [0, 1] : h(s) = 0

}
,

so S0 is the set of points on which the ironed quantile social surplus is zero. There are two

cases that S0 is empty: either h(1) > 0, or h(0) < 0. Because h(0) < 0 represents the

uninteresting case that it is socially undesirable to trade under incomplete information, so

we assume that if S0 is empty, we have h(1) > 0.

By Corollary 1 on page 219 and Theorem 2 on page 221 of Luenberger (1969), P̂ ∈ Ωw(P̃ ∗)

solves problem (6) if and only if there exists λ ≥ 0 such that P̂ maximizes L, and the

complementary slackness condition

λ

∫ 1

0

g̃(s)P̂ (s) ds = 0

holds. Consequently, an optimal P̂ can be found using the following algorithm:

Step 1. Check that if there exists ŝ ∈ [0, 1], either ŝ ∈ S0, or S0 = ∅ and ŝ = 1 such that

P̂ (s) =


(1− s)n if s ∈ [0, ŝ]

/⋃
i∈I [xi, xi)∫ xi

xi
(1−s)n−1ds

xi−xi
if s ∈ [xi, xi)

0 if s ∈ (ŝ, 1]
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satisfies ∫ 1

0

g̃(s)P̂ (s) ds ≥ 0.

If so, we can set λ = 0, which implies that the quantile “virtual surplus” of the Lagrangian

coincides with the ironed quantile social surplus: φ(s; 0) = h(s); and P̂ solves problem (6).

If not, go to Step 2.

Step 2. We must have λ > 0, otherwise we could have found an ŝ in Step 1. Now we

search for λ > 0 such that there exists unique s̃ that φ(s;λ) = 0, and the “induced interim

allocation”

P̂ (s) =


(1− s)n if s ∈ [0, s̃]

/⋃
i∈J [y

i
, yi)∫ yi

y
i

(1−s)n−1ds

yi−yi
if s ∈ [y

i
, yi)

0 if s ∈ (s̃, 1]

satisfies ∫ 1

0

g̃(s)P̂ (s) ds = 0.

If we can find such (λ, s̃) pair, P̂ solves problem (6); if not, go to Step 3.

Step 3. Then there must exist an interval [a, b] ⊆ [0, 1], where a < b, such that φ(·;λ) = 0

on [a, b], and there exists P with

0 ≤ P ≤
∫ b
a
(1− s)n−1 ds

b− a

such that

P̂ (s) =



(1− s)n if s ∈ [0, a]
/⋃

i∈J [y
i
, yi)∫ yi

y
i

(1−s)n−1ds

yi−yi
if s ∈ [y

i
, yi)

P if s ∈ (a, b]

0 if s ∈ (b, 1]

satisfies ∫ 1

0

g̃(s)P̂ (s) ds = 0

solves problem (6).

C.2 Proof of Corollary 3

Because f is continuously differentiable and log-concave, −F/f is decreasing. Then since

h is strictly decreasing, g(q) = h(q) − F (q)/f(q) is also strictly decreasing, and so are g̃
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and h̃. Therefore, the “virtual surplus” of the Lagrangian, φ̃(s;λ) = h̃(s) + λg̃(s) must be

strictly decreasing for any λ ≥ 0. Consequently, there must exist unique š ∈ [0, 1] such that

φ̃(š;λ) = 0. The result thus follows.

C.3 Proof of Corollary 4

If φ(0;λ∗) < 0, then it is socially optimal not to procure from any potential seller. If

φ(s;λ∗) = 0 on an interval [0, b] with b > 0, then following Step 3 in the algorithm in the

proof of Theorem 3, it is optimal to make one round offer with probability p, where p solves

∫ 1

0

g̃(s)P̃ (s) ds =

∫ b

0

g̃(s)p

∫ b
0
(1− t)n−1 dt

b
ds = 0.

Note that the second equality above holds if and only if
∫ b

0
g̃(s) ds = 0, so we can set p = 1.

Therefore, in this case, we only need one round of sequential offers.

Now assume φ(0;λ∗) = m > 0. Because both v(q)−q and −F (q)/f(q) are concave under

our assumptions, so their weighted sum φ(q;λ) is also concave and a fortiori single-peaked.

Consequently, there must exist c ∈ [0, 1] such that φ(s;λ∗) = m on [0, c) and decreasing on

[c, 1]. Then by Theorem 4, if there exists unique š ∈ [c, 1] such that φ̃(š;λ∗) = 0, a round of

sequential offers followed by an auction is optimal; otherwise another round of offers might

be rendered with positive probability.

D Single-peakedness of buyer’s virtual surplus

In this section, we identify a set of conditions on primitives that ensures the buyer’s virtual

surplus g(q) is single-peaked.

Lemma 3. Assume that both v(q) and f(q) are twice continuously differentiable, and v′(q) 6=
0 for all q ∈ [0, 1], then g is single-peaked if and only if for all q∗ ∈ Lg = {q ∈ [0, 1] | g′(q) =

0}, we have

− v′′ (q∗)

v′ (q∗)
≥ − d

dq
log

(
1 +

d

dq

(
F (q∗)

f (q∗)

))
. (18)

Note that the left-hand side of (18) can be interpreted as the Arrow-Pratt coefficient

of absolute risk aversion of buyer’s valuation function v evaluated at q∗. Loosely speaking,

for (18) to hold, v has to be risk averse enough at all q∗ ∈ Lg, or (even looser) v is “not

too convex” around q∗’s. Whether it is “enough” or “not too convex” is determined by the

quality distribution.
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Proof. Observe that g(q) is single-peaked if and only if for any q∗ ∈ [0, 1] such that g′(q∗) = 0,

we have g′′(q∗) ≤ 0.39 Now

g′(q∗) = 0⇔ v′(q∗) = 1 +
d

dq

(
F (q∗)

f(q∗)

)
.

But then g′′(q∗) = v′′(q∗)− [F (q∗)/f(q∗)]′′ has the same sign as

v′′ (q∗)

v′ (q∗)
− [F (q∗)/f(q∗)]′′

1 + [F (q∗)/f(q∗)]′
=
v′′ (q∗)

v′ (q∗)
− d

dq
log

(
1 +

d

dq

(
F (q∗)

f (q∗)

))
;

consequently, g′′(q∗) ≤ 0 is equivalent to (18).

If we assume that both v and f are twice continuously differentiable, it is easy to see

that Lemma 3 implies Corollary 2.

39g is twice differentiable because we assume both v and f are.
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