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the evidence gathering process irrespective of whether its outcome is certified. When

acquisition is covert, the receiver does not. In contrast to the case with exogenous
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1 Introduction

This paper studies a disclosure game in which evidence is endogenously and flexibly

acquired at a cost by a sender. Once she has acquired the evidence, the sender chooses

whether to pay a third-party firm to certify it.1 In the absence of such certification, the

sender’s message is merely cheap talk (equivalently, the sender simply does not disclose

her evidence). Upon observing the sender’s message the receiver takes an action that

affects both players’ payoffs.

Real-world examples that are captured by this setup abound. For instance, this model

is an extension of the seminal papers Verrecchia (1983) and Verrecchia (1990), in which

the sender is a manager of a risky asset and the receiver is a collection of market traders.

It is natural to suppose that the evidence available to the manager for disclosure takes

time and effort to acquire. Another suitable example is that of a monopolist generating

information about its product in order to convince consumers to purchase it. Product

tests are costly yet can be designed with care, justifying the flexible approach we allow

our sender.

We grant the sender complete flexibility over what evidence she acquires, but impose

that more and finer information is more costly to acquire. This is realistic. Consider our

leading example, in which the sender is the manager of a firm (or the firm itself) and

the state is the value of some economic asset. In this setting, the manager has significant

freedom about the type and quality of information she acquires. She can instruct her

employees to scrutinize certain aspects of the asset more than others, hire accountants

with expertise in different areas, or conduct tests or reviews with different emphases.

Furthermore, more (finer) information is more expensive. More thorough tests are more

expensive to run, more skilled employees are more expensive to hire, and hiring more

workers costs more.

Within this environment we are interested in the following three things. First, what

is the impact of transparency in the evidence gathering stage? We look at two different

cases–covert, in which the sender’s evidence acquisition is secret; and overt, in which it

1Equivalently, the sender must incur some cost in order to disclose her findings.
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is public–and compare the equilibria between the two. Second, what is the role played

by evidence acquisition costs? In particular, how do the equilibria and players’ welfare

change as it becomes more difficult for the sender to acquire information? As such costs

vanish, what equilibrium in the costless acquisition benchmark serves as the limit? Third,

what is the role of the certification fee given that the evidence is exogenous?

We find that the receiver always prefers covert to overt evidence acquisition, strictly if

there is an equilibrium with covert acquisition in which the sender acquires information.

That is, transparency is always detrimental to the receiver’s welfare. This phenomenon

arises since transparency grants the sender a form of partial commitment absent when

her evidence acquisition is hidden. Our sender would like to credibly commit not to

acquire any information at all, but when evidence acquisition is covert and information

is not too costly, she finds it too tempting to secretly deviate and acquire information, to

the receiver’s benefit.

That the overtness of evidence acquisition may lead to total uninformativeness is also

observed by DeMarzo et al. (2019) (who specify that a sender’s test may fail to return

evidence á la Dye (1985)), and the intuition behind their result is identical to ours. They

also find that the receiver may strictly benefit from opacity but the intuition behind their

result is different from that for ours. Specifically, in their setting, all tests are equally

costly (or costless), and so a “minimum principle” holds, which imposes that the market

is maximally pessimistic about the asset’s quality following non-disclosure. Not so in our

setting; instead, the belief by our receiver (or the market) upon observing non-disclosure

is the fixed-point lower point of support in our sender’s optimal flexible learning.

Even when evidence acquisition is covert, if the costs of obtaining evidence or certi-

fication are too high, the sender acquires no information in any equilibrium. However,

if obtaining evidence is sufficiently cheap and the certification cost is relatively low, the

sender acquires evidence in every equilibrium. We also look at what happens as infor-

mation costs vanish. We find that when this occurs, all equilibria converge to the Pareto-

worst free-learning equilibrium, which highlights a significant difference between cheap

information and free information. This is reminiscent of the main finding of Ravid et al.

(2022), but the mechanics behind the results are different. Our result occurs because
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when information is costly, the sender always seeks extremely coarse evidence: she either

acquires evidence that the state is high, which she gets certified; or evidence that it is low,

which she does not.

We also look at the effect of the certification fee. Perhaps surprisingly, since it stands

in stark contrast to the findings in the papers with exogenous information, when evidence

acquisition is covert, the receiver always weakly prefers a strictly positive certification fee

and may strictly prefer it. The certification fee cannot be too high, or else the sender will

not learn, but a low but positive certification fee strictly improves the receiver’s welfare.

The reason for this result is subtle and stems from the endogeneity (and cost) of the

information available to the sender. There cannot be an equilibrium in which the sender

acquires evidence when certification is free since the receiver’s conjectured belief follow-

ing non-certification can never be correct. Because certification is free, the sender’s payoff

as a function of the expected value of the state is locally strictly convex at the conjectured

belief (there is a kink precisely at the conjectured expected value) and so it is never op-

timal for the sender to obtain that value and not certify it.2 Given this, the only possible

equilibrium is that the sender acquires no evidence and always gets it certified, which is

indeed the equilibrium when there is no certification cost.

We finish this section by discussing related work. Section 2 introduces the model,

Section 3 goes through a benchmark when evidence acquisition is costless, and Section

4 contains the (bulk of the) main results. Section 5 details our free-learning equilibrium

selection result, and Section 6 concludes. Appendix A specifies our equilibrium concept,

and Appendix B contains the proofs omitted from the text. We argue that our findings

persist when our setting is instead that of Dye (1985) in a Supplementary Appendix.

1.1 Related Work

Shishkin (2022), who also endogenizes evidence acquisition in the model of Dye (1985)

but imposes that such acquisition is costless, is the closest paper to this one. Shishkin

also distinguishes between the overt and covert scenarios and shows that the equilibrium

2We illustrate this in Figure 2 infra.

4

https://whitmeyerhome.files.wordpress.com/2022/08/costly_evidence_and_discretionary_disclosure_supplement_v2.pdf


evidence structures take remarkably simple forms: for a low failure rate it is a pass-fail

test; and it is two-sided censorship (in which an intermediate region of states is fully

disclosed) otherwise. Our sender also chooses simple evidence (she always acquires at

most two pieces of evidence), but in our setting this is a consequence of the fact that more

precise evidence is more expensive.

Whitmeyer and Jain (2022) is also similar. There, the authors study a disclosure game

with two senders, each of whom acquires evidence (for free) in order to obtain the favor of

a receiver. The commitment power engendered by overt evidence acquisition (what they

term “transparency of protocol”) also makes the receiver worse off vis-a-vis the covert

scenario, though the mechanism is different to this one. Things are more complicated

there since a sender’s payoff is itself an equilibrium object, generated by the strategy of

the other sender.

This paper is also related to Bertomeu et al. (2021), who study a problem in which a

regulator designs a measurement system (a signal) about an asset’s value, the realization

of which is observed by manager (privately) with some exogenous probability, which she

may then disclose to investors (the receiver) if she obtained evidence. Their problem is

similar to Shishkin (2022) in that generating evidence is costless, although in their setting

it is a third party who designs the information.

DeMarzo et al. (2019) also endogenizes evidence acquisition in the setting of Dye

(1985) by allowing a sender to choose a test from set K of available tests, before choosing

whether to disclose its outcome or pretend to have received a null result (which occurs

with some probability). In part of the paper they assume that tests are costly but impor-

tantly this cost is independent of the test, its result, or the asset’s quality (the state), which

is not the case in our paper. This creates significant divergences between our results and

theirs: they find that as the testing costs vanish, nearly all of their agents (the testing cost,

for them, is a random variable) take the test; whereas our limiting outcome, in contrast, is

particularly inefficient: our sender chooses the Pareto-worst equilibrium evidence struc-

ture. Likewise, our finding about the benefits (to the receiver) of a certification cost (or

positive test failure rate) is absent from their paper since their constant cost precludes the

local convexity at the conjectured belief property that we encounter.
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Other works that endogenize the sender’s information in disclosure games are Pae

(1999), who, like DeMarzo et al. (2019), allows the sender to pay an nondiscriminatory

cost to acquire information about the (in Pae’s paper) endogenous state; and Hughes and

Pae (2004), who stipulate that the sender may pay some (again, fixed) cost to receive

the “precision information” about the unknown state. In Ben-Porath et al. (2018), the

manager (sender) chooses from different projects the random outcome from which she

may disclose. Surprisingly, the manager takes excessive risks even if the expected return

is lower. Competition is a key feature of Kartik et al. (2017) who study a competitive

disclosure game with multiple senders. Each (privately) chooses the probability with

which she obtains evidence (subject to an increasing cost), which she may subsequently

disclose. Dasgupta et al. (2022) study the problem of a buyer who chooses publicly what

(distribution over) hard evidence to obtain, which shemay then disclose to amonopolistic

seller who engages in nonlinear pricing.3

There is also a literature on information acquisition in cheap-talk games. In a general

cheap-talk environment, Pei (2015) looks at covert costly information acquisition and es-

tablishes that a sender always communicates what she finds to the receiver. The intuition

driving this result is similar to that implying our Lemmas 4.1 and 4.2. Argenziano et al.

(2016) compare covert and overt costly information acquisition, and find that under both

regimes, the sender over-acquires information and that the receiver may prefer either to

delegation. Escudé (2020) allows a sender to costlessly and covertly acquire partially veri-

fiable information about the state, which he discovers is always revealed by the sender. In

Lyu and Suen (2022), the authors study overt, costless information acquisition preceding

cheap talk.

Finally, our sender, taking as given her disclosure strategy, faces a Bayesian persua-

sion/information acquisition problem (Kamenica and Gentzkow (2011) and Gentzkow

and Kamenica (2014)), and so our paper fits broadly within these literatures.4 Specifi-

3A couple other less similar but still relevant papers are Henry (2009), who also studies transparency in

a disclosure game with information acquisition in which acquired evidence can be concealed; and Penno

(1996), who allows a sender to choose the precision of the firm’s financial reporting system.

4Mackowiak et al. (2022) and Kamenica (2019) provide comprehensive surveys of the two areas.
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cally, we use techniques from Gentzkow and Kamenica (2016), Kolotilin (2018), Dwor-

czak and Martini (2019) and Arieli et al. (2022) throughout.

To the best of our knowledge, we are the only paper to study costly flexible evidence

acquisition in a game of verifiable disclosure. This is valuable for two reasons. First, it

is realistic: an asset manager has significant freedom about what evidence to acquire,

and finer and more granular information is more expensive. Second, it leads to effects

and predictions absent from settings with exogenous evidence, endogenous but free (or

equally costly) evidence, or endogenous evidence from a family of distributions parame-

terized by a scalar.

2 The Model

There is a sender (she, S) and a receiver (he, R). There is an unknown state of the world

θ ∈ [0,1] about which S and R share a common prior with cdf F and mean µ ∈ (0,1). F

admits a strictly positive density f . For technical convenience, F is strictly log-concave.

R’s set of actions is A = [0,1] and her utility is the commonly-used “quadratic” loss spec-

ification: uR (a,θ) = − (a−θ)2. The sender’s utility is state-independent and linear in the

sender’s action: uS = a.

Before communicating to R, S acquires information flexibly subject to a cost. We

allow her considerable freedom in this regard: she may choose any signal π : [0,1] →

∆ (X), where X is a (compact) set of signal realizations.5 As is well-known, the quadratic

loss utility of R means that R’s (uniquely) optimal action at any posterior distribution is

simply the posterior expectation.6 For this reason, it is without loss to restrict attention

on the class of signals where X = [0,1], and each x ∈ X equals the induced posterior mean:

x = E[θ|x]. Moreover, the set of distributions of posterior means that is consistent with

5For a compact metrizable space Y , let ∆(Y ) denote the set of all probability measures on the Borel

subsets of Y .

6Thus, an alternative interpretation of our setup is that given by Verrecchia (1983) and the literature

that follows: he specifies that the receiver is a market and that the sender wants to maximize the expected

market value of the project (belief about the state).
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some signal is the set of mean-preserving contractions (MPCs) of the prior F,7 which we

denote by M (F).

Given this, we specify that the sender’s cost of acquiring information is posterior-mean

measurable: the cost of acquiring any G ∈M(F) is

C (G) = κ

! 1

0
c (x)dG (x) ,

where c is a twice-differentiable, strictly convex function that is bounded on (0,1) and

satisfies c (µ) = 0; and κ > 0 is a scaling parameter. Note that this cost function has the

desirable feature that it is monotone with respect to informativeness: if G is a MPC of Ĝ,

i.e., corresponds to a less informative Blackwell experiment than Ĝ, C (G) ≤ C
"
Ĝ
#
. One

specific example of such a cost function is that in which c (x) = (x −µ)2, which we use in

Section 4.4’s example.8

It is only the posterior mean that is strategically relevant for R, and therefore the

same holds for S . Because of this, we limit the space of messages available to S to be

M ≔ [0,1]∪ {m∅}, where m∅ corresponds to non-disclosure (non-certification). This is a

game of verifiable disclosure: if S acquires posterior mean x, her set of available messages

is Mx ≔ {x,m∅}. Disclosure of x is costly, so we can think of the choice of message x as

paying a certifier cost γ > 0 to verify that the posterior mean is indeed x and the choice

of message m∅ as S declining to have her claim certified. We specify that the sender’s

overall payoff is additively separable in uS , the cost of certification (γ), and the cost of

acquiring information.

We are interested in the effects of transparency in this environment and, therefore,

look at two different cases:

1. Covert Evidence Acquisition R does not observe G and G cannot be certified.

7This is established formally in Kolotilin (2018). A distribution G ∈ ∆([0,1]) is a mean-preserving con-

traction of F if
! x
0 G(s)ds ≤

! x
0 F(s)ds for all x ∈ [0,1], where the inequality holds with equality at x = 1.

8We impose that the cost of acquiring information is mean-measurable for simplicity of exposition. By

identifying with the prior F a joint distribution Φ (x1,x2,x3, . . . ,xn) over the first n non-centered posterior

moments, we could instead that the cost of acquiring information is functional C (Υ) = κ
!
cdΥ where Υ is

a fusion (the n-dimensional generalization of an MPC) of Φ and c : Rn → R+ is a convex function. As we

note in the Supplementary Appendix, our main findings all continue to hold in this generalization.
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2. Overt Evidence Acquisition R observes G.

The latter case is “more transparent” than the former: R observes S’s information gather-

ing activities, no matter whether S gets the outcome certified.

The timing of the game is as follows:

1. S acquires information by choosing some distribution of posterior means G ∈M (F).

2. S observes the realization x from G then chooses whether to get x certified (send

message x) and incur cost γ or not (send message m∅).

3. R observes S’s message and G if evidence acquisition is overt.

4. R takes action a and payoffs realize.

We study perfect Bayesian equilibria of the game. A formal definition of the equilibria,

for both covert and overt evidence acquisition, can be found in Appendix A.

3 Costless Evidence Benchmark

We begin by discussing a natural benchmark; the case when κ = 0, and, therefore, it

is costless for S to acquire information. First, let us look at the overt acquisition case.

Suppose first that the certification fee is not too high: γ < 1 − µ; in which case, given

a conjectured (expected) value of non-disclosed evidence, α, the sender’s payoff from

acquiring posterior x is

V (x) =

$%%%%&%%%%'

α, if 0 ≤ x < α +γ

x −γ , if α +γ ≤ x ≤ 1
,

where α ≤ µ.

This function is convex and piecewise linear, with one inflection point at α + γ < 1.

Thus, in any best response by S , she will not pool any states below α + γ with those

above when she acquires information. She does not want to contract the distribution

across the inflection point as doing so would strictly lower her payoff. Consequently, in

any equilibrium the disclosure must be a truncation: the sender will not disclose any

evidence below the equilibrium inflection point α∗ + γ of the value function. Strict log-

concavity of F (Bagnoli and Bergstrom (2005)) ensures that the state of indifference, and
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therefore α∗, is unique:

Lemma 3.1. With covert evidence acquisition and a low certification cost (γ < 1 − µ), in any

equilibrium, the expected value of the state conditional on non-certification, α∗, solves

α∗ = EF [θ|θ ≤ α∗ +γ] . (&)

On the other hand, when obtaining evidence is free, the sender’s payoff is linear on

[α∗+γ ,1], and hence she is indifferent as to what evidence she acquires about states above

α∗+γ . The receiver, of course, is not indifferent and prefers more information. As a result,

there is a large multiplicity of equilibria, which can be Pareto ranked.

Proposition 3.2. With covert evidence acquisition and a low certification cost (γ < 1−µ), any

evidence acquisition protocol in which the sender does not pool states above x∗≔ α∗+γ (where

α∗ is defined in &) with those below, then certifies a posterior, x, if and only if x ≥ x∗, is an

equilibrium. There are no other equilibria.

These equilibria can be Pareto ranked: the Pareto-best equilibrium is that in which the

sender acquires full information and discloses above x∗. The Pareto-worst equilibrium is that

in which the distribution of posterior means above x∗ is degenerate on E [θ|θ ≥ x∗].

It is clear that the Pareto-maximal payoff is uniquely induced (since it is an MPS of

all other equilibrium distributions of posteriors) by the stated equilibrium.9 Moreover,

the receiver’s (and sender’s) payoffs are precisely those that they would obtain if the in-

formation were exogenously F. Viz., the receiver obtains the same payoff as if the sender

were fully informed about the state exogenously. Similarly, the Pareto-minimal payoff is

also uniquely induced (since it is an MPC of all other equilibrium distributions). In this

equilibrium, the sender (and receiver) learn only whether the state is above x∗, nothing

more.

When certification is expensive: γ ≥ 1−µ, in any equilibrium there is no certification.

Proposition 3.3. With covert evidence acquisition and a high certification cost (γ ≥ 1 − µ),

there is no certification in equilibrium.

9By uniquely we mean unique up to the distribution of non-certified posteriors, which are behaviorally

and payoff-irrelevant.
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Because there is no certification, these equilibria are all equivalent in the sense that

there is no information transmission and the sender’s and receiver’s payoffs are unaffected

by the distribution of posterior means acquired by the sender.

When obtaining evidence is overt, the analysis is equally simple:

Proposition 3.4. With overt evidence acquisition, there is an equilibrium in which the sender

acquires no information and never certifies. In every equilibrium, the sender acquires no pos-

teriors strictly greater than min{µ+γ ,1} and never certifies.

For all intents and purposes, all of the equilibria with overt evidence acquisition are

the same and equivalent to the one in which the sender chooses the degenerate distri-

bution, i.e., acquires zero evidence and never certifies. In each, there is no information

transmission and the sender does not waste any resources on certification. The partial

commitment power granted to the sender by transparency hurts the receiver. The sender

may now credibly commit to effectively learn nothing about the state, which she does in

every equilibrium. As we will see, this result persists when evidence is costly (κ > 0).

4 Main Analysis

Now we introduce a cost to acquiring information, i.e., the cost parameter is κ > 0.

4.1 Covert Evidence Acquisition

Our first result notes that at most one piece of certified evidence is followed by certifica-

tion (with positive probability) in any equilibrium.

Lemma 4.1. In any equilibrium, the distribution of posterior means acquired by the sender, G,

has support on at most one posterior that is certified with positive probability.

Key to this lemma is the fact that S’s payoff is linear (gross of the cost of obtaining the

belief) in R’s posterior x, but the cost of obtaining a belief x is strictly convex. Thus, by

learning less collapsing beliefs to their average, S can save on costs while not affecting

the direct payoff from certification.
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Lemma 4.2. In any equilibrium, the distribution of posterior means acquired by the sender, G,

has support on at most one posterior that is not certified with positive probability.

In Lemma 4.1, it was the linearity of the gross payoff that rendered a single certified

posterior optimal. Here, the gross payoff from a non-certified posterior is just a constant–

recall that it is the conjectured posterior following non-certification (messagem∅)–which

again makes coarse(r) learning superior for the sender. Combining these lemmas, we

have the following proposition, which pins down coarse learning as a necessary feature

of any equilibrium:

Proposition 4.3. In any equilibrium, the distribution of posterior means acquired by the

sender, G, has support on at most two points. The sender never randomizes following infor-

mation acquisition: a posterior in support of G is either certified or not.

We see that the costliness of obtaining evidence leads to coarse information. The

sender optimally acquires at most two pieces of evidence: good news, which she finds

worthwhile to get certified; or bad news, which she does not. This hints at our conver-

gence result of the next section. Information is valuable for the receiver, but this is not

internalized by the sender, who instead saves on her privately-incurred costs of obtaining

evidence by omitting fine details.

Next, we turn our attention to equilibrium existence, before moving on to the more

interesting (and economically relevant) discussion of properties of equilibria.

Theorem 4.4. An equilibrium always exists. It is not necessarily unique.

Here is a sketch of the proof: if the cost of certification is sufficiently high (γ ≥ 1− µ),

the result is immediate since there exists an equilibrium in which the sender acquires no

information and certifies with probability 0. Now let γ < 1− µ. For a fixed (conjectured)

value of non-certification, α ∈ [0,µ], the sender’s payoff as a function of her acquired

posterior x is

Vα (x) =

$%%%%&%%%%'

α −κc (x) , if α +γ > x

x −γ −κc (x) , if α +γ ≤ x
.
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In her evidence acquisition problem, the sender chooses a distribution Gα that solves

max
G∈M(F)

!
Vα dG. (△)

We finish by showing that there must always exist a fixed point α that corresponds to the

sender’s optimally acquired Gα .

At equilibrium there are four potential types of information acquisition. First, the

sender may acquire coarse evidence about whether the state is high or low (Figure 1a).

There, the sender’s evidence acquisition corresponds to a truncation of the distribution:

she is sure whether the state is above some threshold, but nothing more. This occurs

if the cost of acquiring information (κ) is sufficiently low and the certification cost (γ)

is also low (but not 0). In the parlance of Dworczak and Martini (2019) or Arieli et al.

(2022), this is a monotone partitional evidence structure. Second, the sender may acquire

evidence but occasionally conflate high states with low ones and vice versa (Figure 1b).

This may occur (depending on the cost function) if κ and γ are moderately low. In the

parlance of Arieli et al. (2022), this is a “bi-pooling” evidence structure.

Third, the sender may acquire no evidence but always certify it (Figure 1c). This

occurs if κ is high but γ is low. Non-certification is off-path and is met with extreme pes-

simism (0 belief) if the receiver observes it. Fourth, the sender may acquire no evidence

and never certify it (Figure 1d). This occurs if κ and γ are high. In both of these cases,

the sender collapses the entire distribution to its barycenter (mean), learning nothing.

4.2 Some Properties of (Covert) Equilibria

No matter the cost functional, the prior, or the cost of certification, if information is

sufficiently costly, there exists an equilibrium in which the sender does not acquire any

information, and there exist no equilibria in which the sender acquires information.

Proposition 4.5. For any prior F, cost functional C, and certification cost γ > 0, if κ is suffi-

ciently high, there exist no equilibria with evidence acquisition.

That is, for any fixed combination of the other primitives, there exists a threshold cost

of information κ̄ such that if κ exceeds κ̄ the only equilibria are those in which the sender

does not obtain any evidence.
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(a) Low κ and γ . (b) Moderate κ and low γ .

(c) High κ and low γ . (d) High κ and γ .

Figure 1: The Four Varieties of Covert Equilibria: The equilibrium payoff functions as

functions of the acquired posterior mean (x) given the conjectured non-certification value

(α) are the colored curves. The dual in this optimization problem (the “price function” of

Dworczak and Martini (2019)), in black, determines the sender’s optimal evidence.
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Moreover, as we illustrate in the proof, for κ sufficiently large, there is a multiplicity:

in any equilibrium the sender acquires no evidence, but there is an equilibrium in which

the sender never gets the evidence (or lack thereof) certified and an equilibrium in which

the sender gets the evidence certified.

In contrast, unless γ ≥ 1−µ, if κ is sufficiently small, the sender acquires information

then discloses if the evidence is good.

Proposition 4.6. For any prior F, cost functional C, and certification cost 0 < γ < 1−µ, there

exists a threshold cost of information
¯
κ > 0 such that if κ ≤

¯
κ, all equilibria must involve

information acquisition.

The effect of the certification on the existence of equilibria in which the sender ac-

quires information is more ambiguous. Roughly, as γ decreases, it makes it harder to

sustain equilibria in which the sender neither acquires evidence nor gets it certified.

However, it makes it easier to sustain equilibria in which the sender does not acquire

evidence but nevertheless gets it certified. In fact, when γ = 0, this is the only equilib-

rium that exists:

Proposition 4.7. If certification is costless, γ = 0, but evidence gathering is costly, κ > 0, the

unique equilibrium is that in which the sender acquires no evidence but gets it certified.

This proposition reveals a key difference between this paper’s setting–with costly

(flexible) evidence acquisition–and the exogenous information environment. In the latter,

the receiver’s welfare is strictly decreasing as the disclosure (verification) cost increases

since the equilibrium level of information transmitted is strictly decreasing. Here, we see

that costless certification is the worst case for the receiver. Due to the endogeneity of the

sender’s evidence, it is only when the certification cost is strictly positive that the sender

faces sufficient incentives to acquire information.

As we explain in the introduction, the force driving the result is the local convexity in

the payoff from acquiring evidence at the conjectured “no-certification belief” α. Figure

2 depicts this for various cost functions.

Naturally, the certification cost cannot be too high: if γ ≥ 1−µ, there is no evidence ac-

quisition (and hence no information transmission) at equilibrium. However, provided γ
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Figure 2: The Local Convexity of V (x) at α.

is in an intermediate range, and the cost of acquiring information is not too high (refer to

Proposition 4.6), there is information transmission in any equilibrium, a strict improve-

ment for the receiver. Summing things up,

Corollary 4.8. The receiver prefers a strictly positive certification cost to no certification cost.

If the cost of acquiring evidence is sufficiently low, this preference is strict.

4.3 Overt Evidence Acquisition

The presence of evidence acquisition costs does not change the effects of transparency.

Now, however, the equilibrium is unique. The sender acquires no information, obtaining

her maximal payoff, to the receiver’s chagrin:

Proposition 4.9. The unique equilibrium is for the sender to acquire no information and not

disclose.

Proof. The maximal payoff the sender can obtain in any equilibrium is µ, the expected

state. Thus, in any equilibrium she must get this payoff, because otherwise she could de-

viate by acquiring no information and not certifying. This is credible, since her evidence
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acquisition (at least her distribution of posteriors) is public. Because evidence acquisition

is costly, a payoff of µ corresponds uniquely to acquiring no evidence followed bym∅. !

Of course, by Jensen’s inequality, this result continues to hold as long as long as the

sender’s reduced-form payoff as a function of the receiver’s posterior is strictly concave.

An easy sufficient condition for this is that the sender’s reduced-form payoff (gross of the

cost of obtaining evidence) is weakly concave. Another sufficient condition is that the

second derivative of the sender’s reduced-form payoff (gross of cost) is bounded on [0,1]

and the cost parameter κ is sufficiently large.

In light of Proposition 3.4, which states that there is no information transmission

when information is free and its acquisition is overt, this result is not surprising. A cost

of acquiring evidence only discourages evidence acquisition, which gives the sender more

of an incentive to forgo learning.

4.4 Uniform Prior, Quadratic Cost Example

Next, we will briefly discuss an example in which the state’s distribution is the standard

uniform and the information cost is c (x) = (x −µ)2.

Proposition 4.10. Except for a knife-edge case, there exists an equilibrium in which the sender

acquires evidence if and only if κ is sufficiently small (κ ∈ [0,1]) and γ is neither too large nor

too small (κ4 ≤ γ ≤ 1
2 −

κ
4 ). Otherwise, the sender does not acquire evidence.

In Appendix B.10, we specify the exact parametric regions, which are depicted in

Figure 3. When κ ≥ 1, the two types of no-evidence-acquisition equilibria coexist for

intermediate values of the certification cost (γ ∈
(
1
4κ ,

1
2 −

1
4κ

)
).

The key qualitative features of the equilibria in this example relate directly to our

earlier propositions. The sender acquires evidence and there is information transmission

at equilibrium, if and only if information is relatively cheap (κ ≤ 1) and certification costs

are relatively small, but not too small.
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Figure 3: Division of the Parameter Space for the Uniform Prior, Quadratic Cost Example.

In Regions A and B, the sender acquires no evidence and either always does not disclose,

or always discloses, respectively. In Region C, these equilibria coexist. In Region D, the

sender acquires evidence at equilibrium.

5 Selecting the Pareto-Worst Equilibrium

In this section we discuss what happens to covert equilibria when the cost of learning

vanishes, i.e., κ ↓ 0. When γ ≥ 1 − µ, there is no certification and hence no information

transmission in any equilibrium; consequently, whether κ is nonzero does not matter. We

henceforth focus on the more interesting case in which γ < 1−µ.

A distribution of posterior means G ∈ M(F) is monotone partitional if there ex-

ists t ∈ [0,1] such that supp(F) ⊆ {xL(t),xH (t)} with xL(t) = E [x |x ∈ [0, t]] and xH (t) =

E [x |x ∈ [t,1]]. Say that an equilibrium ismonotone partitional if in this equilibrium, the

distribution of posterior means acquired by S is monotone partitional. By Proposition

4.6, when κ is sufficiently small, the sender must acquire information. The following

result characterizes the set of equilibria in this case.

Lemma 5.1. For any γ ∈ (0,1−µ), there is a threshold κ̃ (γ) > 0 such that for all κ ≤ κ̃ (γ) any

equilibrium is monotone partitional.
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Intuitively, as κ decreases, the sender’s value function is “less distorted” by the cost.

In particular, when κ gets very small, it gets “close” to the piecewise linear and convex

value function in the κ = 0 benchmark. Any feasible distribution of posterior means that

is not monotone partitional must involve contracting some high states and low ones to an

intermediate state, and hence cannot be optimal for any sufficiently small κ.

If the equilibrium is monotone partitional and involves information acquisition, the

sender solves

max
t

*
F (t) (α −κc (xL (t))) +

! 1

t
adF (a)− (1−F (t)) (γ +κc (xH (t)))

+
,

where xL (t)≔ E [θ|θ ≤ t] and xH (t)≔ E [θ|θ > t]. Taking the FOC then setting κ = 0 and

replacing α in the FOC with xL, we obtain xL = t−γ ; and so the limiting truncation point,

t, is precisely that described in Equation & in the costless evidence benchmark. Moreover,

for arbitrary small κ > 0, the sender’s posterior distribution is binary. Thus, the limit

distribution is the Pareto-worst distribution described in Proposition 3.2.

Theorem 5.2. Take any sequence of equilibria as κ ↓ 0. The limit equilibrium is the Pareto-

Worst equilibrium when evidence is free.

Theorem 5.2 reveals that there is a significant difference between “free” evidence and

“cheap evidence” when information acquisition is covert. Even a minuscule (but strictly

positive) cost to acquiring evidence leads the sender to acquire extremely coarse infor-

mation. The finer details about the state are completely unimportant to the sender, who

does not learn them no matter how cheap it is to do so. On the other hand, the receiver,

who wants to “match the state” is hurt by any mismatch. This benefit is not internalized

by the sender, so even though when information is vanishingly cheap it would be efficient

to learn the state precisely, the sender does not do so.

In contrast, there is no real difference between the two concepts when evidence acqui-

sition is overt: both when information is free and when it is cheap, the sender does not

acquire information and does not disclose either.
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6 Discussion

The three main contributions of this paper are that

1. When evidence acquisition is costly, transparency in the acquisition process is neg-

ative as it grants the sender a form of commitment to acquire less information.

2. The receiver always weakly (and sometimes strictly) prefers a positive certification

cost, in stark contrast to models with exogenous evidence.

3. Cheap information is different from free information: allowing evidence acquisition

costs to vanish selects for the Pareto-worst free-information equilibrium.

It is natural to wonder whether these effects occur in the other “warhorse” disclosure

model–namely, that of Dye (1985) and Jung and Kwon (1988). In their paradigm, the

disclosure cost of Verrecchia (1983) is replaced with exogenous failure: with some proba-

bility γ ∈ (0,1) the sender obtains no evidence. They do: we argue in the Supplementary

Appendix that these findings persist in Dye’s setting. The commitment engendered by

transparency, the optimality of coarse information when evidence is costly, and detrimen-

tal effects of unraveling on evidence acquisition continue to hold, and, therefore, continue

to drive the results.

Beyond this, other interesting questions and extensions remain. For one, we assume

that the sender cannot falsify or hide evidence. In many applications–our leading exam-

ple of an asset manager is one–this is reasonable: deception, omission, and falsification

are prohibited by law. However, there are other applications in which hiding evidence

may be realistic. It is possible that this may generate instances in which overt evidence

acquisition is superior to covert. It might also be interesting to look at behavior from

the certifier’s point of view. How would the certifier choose her fee–and possibly other

instruments, coarse classifications, say–to maximize profits?
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A Equilibrium Definition

Let Π denote the set of signals, i.e., the set of measurable maps π : Θ→ ∆ (X). For every

π ∈ Π, let Gπ denote the distribution of posterior means induced by π. S’s strategy set,

Π×D, is the set of pairs (π,d), where π ∈Π and d : X ×Π→ ∆ (M) is such that d (m|x) > 0

implies m ∈ Mx. R’s strategy set is the set of functions α : M ×Π → A. Finally, because

only the posterior mean of the state is strategically relevant to R, R’s beliefs about the

state can be summarized by a function p : M ×Π → [0,1] whose codomain is the set of

posterior means of the state.

We say that (π,d,α,p) is a covert equilibrium if

(1) for all π̂ ∈Π, p (x, π̂) = E [θ |x ] for all x ∈ [0,1], and p (m∅, π̂) = E [θ |m∅,π ];

(2) for all m ∈M and π̂ ∈Π, α (m, π̂) = p (m, π̂);

(3) (π,d) ∈ argmax(π̂,d̂)E
(
d̂ (x|x) (α (x, π̂)−γ) + d̂ (m∅|x) (α (m∅, π̂))

)
−C(Gπ̂).

(π,d,α,p) is an overt equilibrium if (2) and (3) hold, and (1) is replaced by

(1’) for all π̂ ∈Π, p(x, π̂) = E [θ |x ] for all x ∈ [0,1], and p(m∅, π̂) = E [θ |m∅, π̂ ].
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B Omitted Proofs

B.1 Lemma 3.1 Proof

Proof. The piecewise linearity ofV implies that any equilibriummust be above the thresh-

old form: given any conjectured expected value of the state α∗ the sender will not pool

states above α∗+γ with states below in the evidence acquisition stage. Given this, and the

linearity of the payoff function above and below α∗ +γ , any equilibrium is characterized

by a posterior threshold x∗ that solves

ξ (x∗)≔ x∗ −

, x∗
0

xdF (x)

F (x∗)
= γ .

Setting x∗ = α∗ +γ produces Equation &. By Theorem 5 in Bagnoli and Bergstrom (2005),

strict log-concavity of F means that ξ (x∗) is strictly increasing and therefore x∗ is unique.

!

B.2 Proposition 3.3 Proof

Proof. Again, the log-concavity of F implies that ξ (x∗)−γ ≤ 0 for all x∗ ∈ [0,1]. Given this,

there is no equilibrium in which the receiver’s belief upon seeing no certification α " µ.

Evidently, if α = µ, the sender prefers to not disclose any posterior. !

B.3 Proposition 3.4 Proof

Proof. The sender’s maximal payoff is µ. Consequently, in any equilibrium she must be

able to obtain this payoff, since she could always deviate by overtly acquiring the de-

generate distribution on the prior δµ then not disclosing. On the other hand, she cannot

overtly acquire any posteriors with support strictly larger than µ+ γ since otherwise she

would want to deviate at an interim point and disclose those high beliefs. !

B.4 Lemma 4.1 Proof

Proof. Suppose for the sake of contradiction that there are at least two posteriors x1 and

x2 in support of G that are disclosed with positive probability. At x1 and x2 it must, there-
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fore, be weakly optimal for S to get each certified. However, due to the strict convexity

of c (·), S can deviate by acquiring (then disclosing) their average instead. Here we are

implicitly assuming that x1 and x2 each realize with positive probability under G, but

it is easy to see that the analogous deviation works when G is atomless on of the set of

posteriors that disclosed with positive probability. !

B.5 Lemma 4.2 Proof

Proof. From Lemma 4.1, there is at most one posterior in support of G that is certified

with positive probability. Moreover, it is obvious that this belief must be certified with

probability 1. If there are multiple posteriors that are not certified, the receiver clearly

prefers to collapse these posteriors to their barycenter, thereby saving on costs. !

B.6 Theorem 4.4 Proof

We first establish two auxiliary results.

Lemma B.1. For every α ∈ [0,µ], the solution to problem △ is unique.

Proof. For each α ∈ [0,µ], the proof of Lemma 4.1 and 4.2 together indicate that any

solution to problem △, denoted by Gα , must satisfy |supp(Gα)| ≤ 2. Fix some α ∈ [0,µ].

The statement is immediate when a solution to problem △ is the degenerate distribution

at µ. Suppose |supp(Gα)| = 2. Because Vα(·) is continuous for all α, a “price function” p à

la Dworczak and Martini (2019) exists. There are two cases: one is that p is affine on [0,1]

and tangent to Vα at two points, in which case we call p a bi-tangent in the parlance of

Arieli et al. (2022); the other is that it is piecewise affine, and the two pieces have different

slopes, in which case we say that p is kinked.

Suppose bothG1
α andG2

α , where supp
"
G1
α

#
" supp

"
G2
α

#
, solve the problem. Denote the

corresponding price functions by p1 and p2, respectively. It cannot be that both p1 and p2

are bi-tangents, since a bi-tangent is unique whenever it exists. Now suppose p1 is a bi-

tangent, and p2 is kinked. By construction, for each i = 1,2, supp
"
Fi
α

#
= {x : Vα(x) = p(x)}.

Then because p2 is convex, it must be that

min
-
supp

"
G1
α

#.
<min

-
supp

"
G2
α

#.
<max

-
supp

"
G2
α

#.
<max

-
supp

"
G1
α

#.
.
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But then by Lemma 1 in Arieli et al. (2022), there does not exist aMPC of F whose support

is supp
"
G1
α

#
; a contradiction.

Finally, suppose both p1 and p2 are kinked. WLOG, assume that min
-
supp

"
G1
α

#.
<

min
-
supp

"
G2
α

#.
. Consequently, the “kink” in p1 must be strictly higher than the “kink”

in p2, and hence max
-
supp

"
G1
α

#.
<max

-
supp

"
G2
α

#.
. Then because Vα is piecewise strictly

concave, p′1(x) < p′2(x) for all x ∈ [0,1],10 and consequently p1(x) > p2(x) for x ≥min
-
supp

"
G2
α

#.
.

But this means that

p2
"
max

-
supp

"
G1
α

#.#
< p1

"
max

-
supp

"
G1
α

#.#
= Vα

"
max

-
supp

"
G1
α

#.#
,

a contradiction. !

To state the next result, let L(α)≔min {supp(Gα)}.

Lemma B.2. Suppose |supp(Gα)| = 2 for all α ∈ [0,µ]. Then the map α +→ L(α) is continuous.

Proof. The objective function of problem △ is continuous in both α and the choice vari-

able G. The constraint correspondence is constant in α and hence continuous, and M

is compact (endowed with the L1 norm). By Berge’s Maximum Theorem11, the solution

correspondence is upper hemicontinuous in α; then by Lemma B.1, the unique solution

Gα is continuous in α. Then because |supp(Gα)| = 2 for all α ∈ [0,µ], L(α) must also be

continuous. !

By the duality approach of Dworczak and Martini (2019), it is easy to see that (i) if

µ ≥ γ and |supp(G0)| =
////supp

"
Gµ

#//// = 2, |supp(Gα)| = 2 for all α ∈ [0,µ]; and (ii) if µ < γ and////supp
"
Gµ

#//// = 2, |supp(Gα)| = 2 for all α ∈ [0,µ]. Next we prove the following proposition,

which immediately implies the theorem.

Proposition B.3. There exists at least one fixed point α ∈ [0,µ] such that there exists a solution

to the maximization problem △, Gα , that is either binary, with a lower point of support α or

degenerate on µ. This fixed point is not necessarily unique.

10If pi , i = 1,2, is not differentiable at x, we define p′i (x) to be its right-derivative.

11For example, Theorem 17.31 in Aliprantis and Border (2006).

26



Proof. If γ ≥ 1 − µ the result is trivial, so set γ < 1 − µ. First let µ ≥ γ . Set α = 0. If the

optimizer G0 is degenerate on µ, we have thus found an equilibrium, and we are done.

Similarly, if the optimizer Gµ for α = µ is degenerate on µ, this is also an equilibrium.

Suppose now that |supp(G0)| =
////supp

"
Gµ

#//// = 2, we must have |supp(Gα)| = 2 for all α ∈

[0,µ]. By definition, L(α), the lower point of support of Gα , is weakly greater than 0

and weakly smaller than µ. Consequently, L is a continuous self-map on [0,µ]. Then by

Brouwer’s fixed point theorem,12 there exists α ∈ [0,µ] such that L(α) = α.

Now let µ < γ . If the optimizer Gµ for α = µ is degenerate on µ, this is an equilibrium,

and we are done. Suppose instead that
////supp

"
Gµ

#//// = 2; consequently, |supp(Gα)| = 2

for all α ∈ [0,µ]. Now we can repeat the above argument and a fixed point necessarily

exists. !

B.7 Proposition 4.5 Proof

Proof. If γ ≥ 1 − µ, the threshold is κ̄ = 0. Now let 0 < γ < 1 − µ and let the conjectured

non-certified value be µ. The line tangent to the curve µ−κc (x) at x = µ is

κc′ (µ) (µ− x) +µ.

This line intersects the curve x − γ − κc (x) on the interval µ + γ ≤ x ≤ 1 if and only if the

function

τ (x)≔ κc′ (µ) (µ− x) +µ− x +γ +κc (x) ,

has a root in [µ+γ ,1]. Next,

τ′ (x) = κ (c′ (x)− c′ (µ))− 1.

The term in parenthesis is strictly positive since c is strictly convex and γ > 0. Accord-

ingly, for all κ sufficiently large, τ′ (x) is strictly positive. Moreover, τ (µ+γ) > 0 and so

τ has no root in the required interval, which allows us to conclude that there exists an

equilibrium with no information acquisition and no disclosure for all sufficiently large κ.

12For example, Corollary 17.56 in Aliprantis and Border (2006).
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If there exists an equilibrium with evidence acquisition, the conjectured non-certified

value will be some α ∈ [0,µ). Suppose first that µ < α + γ . The line tangent to the curve

α −κc (x) at x = µ is

κc′ (µ) (µ− x) +α.

This line intersects the curve x − γ − κc (x) on the interval α + γ ≤ x ≤ 1 if and only if the

function

κc′ (µ) (µ− x) +α − x +γ +κc (x)

has a root in [α +γ ,1]. The remainder is analogous to the previous paragraph: if κ is

sufficiently high, the sender prefers to deviate by learning nothing and not disclosing.

Finally, suppose µ ≥ α +γ . The line tangent to the curve x −γ −κc (x) at x = µ is

(1−κc′ (µ)) (x −µ) +µ−γ .

This line intersects the curve α−κc (x) on the interval [0,α +γ] if and only if the function

ψ (x)≔ (1−κc′ (µ)) (x −µ) +µ−γ −α +κc (x) ,

has a root in [0,α +γ]. The derivative of ψ,

ψ′ (x) = 1−κ (c′ (µ)− c′ (x)) ,

is negative for all κ sufficiently large. Consequently, for all κ sufficiently large, there is

a profitable deviation (if α > 0) and an equilibrium in which the sender does not acquire

any information but gets it certified. !

B.8 Proposition 4.6 Proof

Proof. Since Theorem 4.4 states that an equilibrium must exist, it suffices to show that

for all κ sufficiently small there do not exist equilibria in which the sender acquires no

information.

First, suppose that in the purported equilibrium, there is no certification. In this case

the conjectured non-certified value is µ. It suffices to show that when κ is sufficiently

small, the function τ, defined in the previous proposition’s proof, has a root in [µ+γ ,1].
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Setting κ = 0, τ (µ+γ) = 0. Moreover, τ′ (µ+γ) = −1 when κ = 0. Thus, there is a root,

and hence the sender wants to deviate.

Second, suppose that in the purported equilibrium there is certification with probabil-

ity 1. In this case α = 0. If µ ≤ γ , we immediately see that this equilibrium is impossible.

Thus, let µ > γ . Again, it suffices to show that when κ is sufficiently small, the func-

tion ψ, defined in the previous proposition’s proof, has a root in [0,γ]. Setting κ = 0,

ψ (γ) = 0. Moreover, ψ′ (µ+γ) = 1 when κ = 0. Thus, there is a root, so the sender wants

to deviate. !

B.9 Proposition 4.7 Proof

Proof. First, suppose for the sake of contradiction that there is an equilibrium in which

the sender acquires no information and does not get it certified with positive probability.

In this case, the receiver’s belief upon seeing non-certification is precisely µ and the kink

in the sender’s value function is at µ, which means that it is never optimal to acquire

no information. Second, suppose (also FSOC) that there is an equilbrium in which the

sender acquires information. There is obviously a deviation in which the sender acquires

no evidence and then discloses it with probability 1, yielding S her maximal payoff (since

she is no longer wasting any resources on evidence acquisition). Finally, there is obviously

an equilibrium in which the sender acquires no evidence and gets it certified, since the

corresponding value function in her information acquisition problem is strictly concave

on [0,1]. !

B.10 § 4.4 Example (Including Proposition 4.10) Derivation

A direct computation reveals that given a conjectured lower point of support α ∈ [0,µ), if

the optimal information acquisition is bi-pooling (refer to Arieli et al. (2022) or Kleiner

et al. (2021)) the support of the distribution is
-
α +γ − 1

4κ ,α +γ + 1
4κ

.
. Evidently, α =

α +γ − 1
4κ if and only if γ = 1

4κ .

Let us begin with this knife-edge case. The Rothschild-Stiglitz representation of the

prior (Gentzkow and Kamenica (2016)) is
, x
0
udu (on [0,1]), whereas the Rotschild-Stiglitz
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representation of a potential bi-pooling equilibrium is

T (x) =

$%%%%%%%%&%%%%%%%%'

0, if 0 ≤ x < xL

(1−κ (1− 2(xL))) (x − xL) , if xL ≤ x < xL +
1
2κ

x − 1
2 , if xL +

1
2κ ≤ x

,

where xL ∈ (0,µ).

Lemma B.4. There exists such bi-pooling equilibria if and only if κ > 1.

Proof. The line

(1−κ (1− 2(xL))) (x − xL) ,

is strictly decreasing in κ and hence lies (pointwise) above the line 2xL (x − xL) when κ ≤ 1

and strictly below this line when κ > 1.

The line 2xL (x − xL) intersects the curve x2/2 at x = 2xL. Observe that this is (the

unique) point of tangency of the line and the curve. We can always find an xL, moreover,

such that xL +
1
2κ ≤ 1 and such that the slope of T is positive when κ > 1. Accordingly, for

κ > 1, there exists such a bi-pooling equilibrium. When κ ≥ 1, T (x) always intersects x2
2

at some x ≤ 2xL ≤ xL +
1
2κ , and so bi-pooling equilibria do not exist. !

Now let us identify when there exist no-learning equilibria.

Lemma B.5. There exists a no-learning equilibrium in which the sender does not acquire evi-

dence and does not disclose if and only if κ ≤ 1 and γ ≥ 1
2 −

κ
4 or κ ≥ 1 and γ ≥ 1

4κ .

There exists a no-learning equilibrium in which the sender does not acquire evidence and

always discloses if and only if κ ≤ 1 and γ ≤ κ
4 or κ ≥ 1 and γ ≤ 1

2 −
1
4κ .

Proof. There are two possibilities: α = 0 or α = 1
2 . Let us start with the latter: this is

an equilibrium if and only if the line tangent to 1
2 − κ

"
x − 1

2

#2
at 1

2 lies above the curve

ρ (x)≔ x−γ−κ
"
x − 1

2

#2
on the interval

(
1
2 +γ ,1

)
. As noted in the text, this holds whenever

γ ≥ 1
2 . Let γ < 1

2 . The tangent line is y = 1
2 , and ρ (x) is maximized at 1

2 +
1
2κ if and only if

1
2
+γ ≤ 1

2
+

1
2κ
≤ 1,

or else at 1
2 +γ (γ ≥ 1

2κ ) or 1 ( 1
2κ ≥

1
2 , i.e. κ ≤ 1).
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Evidently, if γ ≥ 1
2κ , the tangent line always lies above ρ and so there exists a no-

learning equilibrium of this form. If κ ≤ 1 then ρ is maximized at x = 1, yielding value

1 − γ − κ
4 .

1
2 is larger than this if and only if γ ≥ 1

2 −
κ
4 . If κ ≥ 1 and γ ≤ 1

2κ the maximal

value of ρ (x) is 1
2 +

1
4κ −γ . Accordingly,

1
2 lies above this (and so there exists a no-learning

equilibrium of this form) provided γ ≥ 1
4κ .

Now we turn our attention to the other variety of no-learning equilibria. In this

case, the analysis is analogous mutatis mutandis: we find when the line tangent to x −

γ −κ
"
x − 1

2

#2
at 1

2 lies above φ (x)≔ −κ
"
x − 1

2

#2
for all x ∈ [0,γ]. !

Finally, we identify the equilibria (other than the non-generic bi-pooling one when

γ = 1
4κ ) in which the sender acquires evidence.

Proof of Proposition 4.10

Proof. Let γ " 1
4κ . As noted above, the equilibrium cannot be bi-pooling. Consequently,

we solve

max
t∈[0,1]

*
t

0
α −κ

1t − 1
2

223
+ (1− t)

0
t +1
2
−γ −κ

1 t
2

223+
.

The objective is concave in t if and only if κ ≤ 2. Thus, a necessary condition for infor-

mation acquisition is κ ≤ 2. Let us now assume this. Taking the FOC and substituting in

t = 2α yields

α∗ =
κ − 4γ
4(κ − 1).

First let κ ≤ 1. In this case, α∗ ∈
(
0, 12

)
if and only if γ ∈

(
κ
4 ,

1
2 −

κ
4

)
. It is simple to check

that the best response to α∗ is the monotone partitional signal with the truncation point

2α∗ as required. When κ ∈ (1,2], the best response to the specified α∗ is a bi-pooling

distribution (and not a truncation) and so we conclude that κ ≤ 1 is necessary for this

equilibrium with information acquisition to exist. !

B.11 Lemma 5.1 Proof

Proof. Fix y ∈ [0,γ]. Using Lemma 1 in Arieli et al. (2022), we can find z ∈ [µ+ γ ,1] such

that there does not exist aMPC of F whose support is {y,z}. Next we claim that there exists
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κy > 0 such that κ < κy implies that the lower point in the support of any distribution of

posterior means that is not monotone partitional, denote by xL, must satisfy xL < y. To

see this, note that because y ∈ [0,γ], V (y) = α − κc (y); and hence the line tangent to the

curve α −κc (x) at y is

κc′ (y) (y − x) +α.

This line intersects the curve x −γ −κc (x) on [α +γ ,1] if and only if the function

ϕ(x)≔ κc′ (y) (y − x) +α − x +γ +κc (x)

has a root in [α + γ ,1]. But this must be true since ϕ (α +γ) = 0 and ϕ′(α + γ) = −1 when

κ = 0. Consequently, xL < y for sufficiently small κ. Analogously, there exists κz > 0 such

that κ < κz implies that the lower point in the support of any distribution of posterior

means that is not monotone partitional, denote by xH , must satisfy xH < y. Then for

κ <min{κy ,κz}, Lemma 1 in Arieli et al. (2022) indicates that there does not exist a MPC

of F whose support is {xL,xH }. Thus, for all κ sufficiently small, there cannot be any

non-monotone partitional equilibrium. !
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