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Abstract

A principal hires an agent to acquire soft information about an unknown

state. Even though neither how the agent learns nor what the agent discovers

are contractible, we show the principal is unconstrained as to what informa-

tion the agent can be induced to acquire and report honestly. When the agent

is risk neutral, and a) is not asked to learn too much, b) can acquire informa-

tion sufficiently cheaply, or c) can face sufficiently large penalties, the princi-

pal can attain the first-best outcome. We discuss the effect of risk aversion (on

the part of the agent) and characterize the second-best contracts.
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1 Introduction

People buy advice: investors pay for stock picks, politicians and executives in firms

employ advisors, and bettors at the race track ask for winners. In some situations

this advice can be backed up with hard, verifiable evidence; whereas in others

advice is merely cheap talk and honesty is supported only by the advisor’s incen-

tives to be truthful. This paper studies the latter situation: we analyze a contract-

ing problem in which a principal hires an agent to acquire unverifiable evidence,

which cannot be credibly disclosed or contracted upon.1

In our model, it is costly for the agent to acquire information, and he has sig-

nificant freedom in his learning: he may choose any distribution over posterior

beliefs whose mean is the prior. Although the evidence an agent acquires is non-

contractible, in our main analysis, we assume that the true state is. Under this

assumption, we begin by observing that any contract induces a decision problem

for an agent. This allows us to show that the principal can implement any feasible

learning: she can write a contract such that the agent is willing to learn precisely

as desired and report honestly. That is, the agency problem does not impede the

principal’s ability to acquire information. This result stands in stark contrast to

the classical setting (Holmström (1979)), wherein not all effort levels can be im-

plemented in the second-best world.

Next, we show that the required incentives for the agent’s learning produce a

number of conditions whose structure allows us to simplify the principal’s prob-

lem. For any state, each message contingent transfer in that state can be written

as the difference between the transfer paid in that state for a “benchmark mes-

sage” and a constant that depends only on exogenous values and the posteriors

themselves. Not only do the relative incentives completely pin down the agent’s

1This is the key difference between this paper and Rappoport and Somma (2017), who explore

a similar problem but specify that evidence is observable and contractible.
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optimal learning, but the converse is also true: the agent’s optimal learning speci-

fies the relative incentives.

We solve for the cheapest contracts that induce the agent to acquire the desired

information and report his findings truthfully. As in the classical moral hazard

environment, there is a natural benchmark in our model: the first-best problem in

which learning (our analog of effort) is observable and contractible. We show that

when the agent is risk neutral and negative transfers are allowed, any distribution

over posteriors can be implemented at the first-best cost, even in our main setting

with hidden learning and unverifiable evidence. Moreover, this holds even if the

agent may exit the relationship after acquiring information, which renders the

“selling the project to the agent” contract generically ineffective. This highlights

another essential difference between the canonical setting and ours. In the classical

setting, the possibility of an interim exit allows the agent to accrue rents.

If negative transfers are forbidden (limited liability) and the outside option is

sufficiently low, the principal cannot efficiently acquire information through the

agent. Nevertheless, we show that optimal incentives take simple forms in a num-

ber of cases. We provide a full characterization of the optimal contract when the

agent’s outside option is sufficiently small. There, it is only the limited liabil-

ity constraint that binds, which allows us to pin down the optimal contract for

any desired distribution over posteriors. We also fully characterize optimal imple-

mentation with an arbitrary outside option and limited liability in the binary-state

case when the agent is risk neutral. In particular, implementation is efficient if and

only if the agent is not asked to learn too much (in relation to her cost of acquiring

information and outside option).

We also show that the agent’s risk aversion introduces inefficiencies: provid-

ing incentives for the agent to learn requires that he be exposed to risk, which is

surplus destroying when the agent is risk averse. Similar to the classical setting,

we establish that with only an ex ante participation constraint, the agent gets zero
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rents. On the other hand, the possibility of an interim exit generically grants the

agent surplus: there, the principal trades off conceding rents with better risk shar-

ing.

We finish this section by reconciling our main setting’s theoretical predictions

with what we see in practice and also discuss related literature. After that, Sec-

tion 2 lays out the model before Section 3 states the principal’s problem and dis-

cusses the first-best benchmark. Section 4 presents some preliminary results, and

Sections 5 and 6 contain the main results in the absence and presence of limited

liability constraints, respectively. We wrap things up in Section 7.

1.1 Buying Opinions in Practice

It seems indisputable that one essential assumption of our model–the softness

and non-contractibility of the agent’s findings–captures reality in some settings.

Consider, for instance, talent scouting in sports. Although teams have hard evi-

dence about prospects (goals scored, batting average, shooting percentage etc...),

they nevertheless send scouts to obtain soft (unquantifiable) information: a re-

port from an FC Barcelona scout describes a player’s running style, balance, and

control, among other things (Vidal (2019)). The scout writes about the player’s

positioning, “Excellent. It is undoubtedly his best quality. He is always where he

should be...”

On the other hand, our assumption that the true state is contractible is more

difficult to justify. Several comments are in order. First, if the true state is ob-

servable to the principal but not contractible, then as long as the principal has

deep pockets, Kleiner and Whitmeyer (In Progress) show that the contracts we

construct in this paper can be approximated by a mediated protocol, in which the

agent occasionally acquires close to full information and the principal is penalized

if caught in a (probable) lie.

Second, it may be that even the principal does not observe the realized state.
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If the principal has no other source of information about the state other than the

agent then the situation is hopeless: the agent must be provided with differential

incentives in order to learn and report honestly. However, it is reasonable in many

cases that the principal does have access to information about the state other than

that provided by the agent. For example, in professional baseball, once a prospect

is identified by one of its scouts, a team will bring the player in to its training

facility and evaluate him further directly.

The outcome of this sort of evaluation is subjective and private; however, the

ultimate decision by the principal is not. Given this, one common contract is one

that conditions the agent’s reward on the principal’s action. Baseball scouts re-

ceive bonuses if a prospect they recommended makes it to a team. Headhunters

are rewarded if they identify a candidate that is hired–it is common for firms to

pay recruiters a fraction of a hired worker’s salary (crucially, if they are hired, i.e.,

make it past the firm’s final screening). In the supplemental appendix, we explore

an example in which the principal obtains a private signal and the agent’s payment

is conditioned on the principal’s action. There, we point out that i. not all distri-

butions over posteriors may be implementable; ii. the agent may accrue greater

rents; and iii. the principal’s behavior in her decision problem may be distorted, a

new variety of inefficiency.

1.2 Related Literature

Our study belongs to the literature on delegated expertise, pioneered by Lambert

(1986), Demski and Sappington (1987) and Osband (1989), in which a principal

hires an agent to collect payoff relevant information. The central theme of this

literature is incentive design for effective information acquisition and communi-

cation.

There are five recent papers that are close to ours: the already referenced Rap-

poport and Somma (2017), who also study contracting for flexible information
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acquisition, but where the posterior generated by the agent’s choice of distribution

is verifiable and contractible;2 Zermeño (2011); Sharma et al. (2020); Clark and

Reggiani (2021); and Müller-Itten et al. (2021). Zermeño (2011) and Clark and

Reggiani (2021) both explore contracting environments in which both informa-

tion acquisition and decision making are delegated to an agent. Zermeño’s focus

is the interaction between the variables on which the transfer schemes can depend

and whether contracts specify transfer scheme menus. Clark and Reggiani (2021)

show that any Pareto-optimal contract can be decomposed into a fraction of out-

put, a state-dependent transfer, and an optimal distortion.

Sharma et al. (2020) and Müller-Itten et al. (2021) are especially related. The

former explores a two-state version of our environment with a risk-neutral agent

and limited liability (and a low outside option). Our Proposition 6.2 is; therefore,

a generalization of their elegant characterization result (Theorem 1). The latter

work introduces a strikingly useful object–the ignorance equivalent–for studying

rational inattention problems. As an application, they show that a principal can

efficiently acquire information through a risk-neutral agent with only an ex ante

participation constraint.

Carroll (2019) studies a robust contracting problem in which the principal has

limited knowledge about how the agent can learn and evaluates each possible con-

tract by its worst-case guarantee. In Häfner and Taylor (2022) the agent acquires

information to help the principal decide how much she should invest in a project.

The distribution over posteriors and its cost are primitives of the model, and the

agent’s report of the realized posterior is unverifiable. Their focus is on finding the

optimal contract–which can depend on the report and the outcome of the project–

2Bizzotto et al. (2020) consider a similar problem. However, they only allow the agent to deviate

to a “default” distribution, instead of any Bayes-plausible distribution. Also related is Yoder (2022),

who generalizes the two-state (risk-neutral agent) environment of Rappoport and Somma (2017)

by incorporating a screening problem: the agent’s marginal cost of acquiring information (κ) is his

private information. Wang (2023) subsequently generalizes this to n states.
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that motivates the agent to conduct the experiment and report truthfully.3 Deb

et al. (2018) study the problem of a principal that designs a dynamic mechanism

(without transfers) to identify a competent forecaster.

Gromb and Martimort (2007) consider a problem of delegated expertise with

two agents, where the agents may collude among themselves or with the principal.

In their model, the state space is binary, and the agent is restricted to a fixed mes-

sage space containing two signals whose meaning is common knowledge. Their

one-agent/one-signal case is similar to our model: the agent is risk neutral and

protected by limited liability, the compensation can be conditioned on both the re-

port and the realized state, and incentives must be provided for the agent to gather

information and report truthfully. Chade and Kovrijnykh (2016) study a dynamic

model of contracting for information acquisition in a two state-two (fixed) signals

environment. The more effort the agent exerts, the more informative the signal he

acquires. They assume that the realized signals are contractible, but the true state

is not.

Since in our model every contract induces a decision problem with a posterior

separable cost of the agent, our work is naturally related to the rational inattention

literature pioneered by Sims (1998, 2003). To analyze the agent’s problem, we use

insights from Caplin et al. (2022). Maćkowiak et al. (Forthcoming) provides an

excellent review of this literature that covers both theory and applications.

Our principal also needs to elicit information from the agent, which connects

our paper to the belief elicitation literature. Indeed, our transfer scheme is a scor-

ing rule. The most important distinction is that the beliefs in our work are en-

dogenously determined through the agent’s learning. While the papers in that lit-

erature study what scoring rules induce truthful reporting (Gneiting and Raftery

(2007) and Schlag et al. (2015) are good surveys) and what properties of a state dis-

3Terovitis (2018) tackles a similar problem. In his framework, the outcome is deterministically

pinned down by the action and state, and the decision is delegated to the agent.
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tribution can be elicited (see Lambert (2019) and references therein), our focus is

on deriving incentive contracts that induce the agent to learn and report truthfully.

Finally, because we study the motivation of an agent to acquire costly and un-

verifiable information, our work also connects to the moral hazard literature. In

the canonical moral hazard problem (see, for example, Mirrlees (1999), Holm-

ström (1979), Grossman and Hart (1983), and Holmström and Milgrom (1987)),

the agent is impelled to exert costly effort that yields some (distribution over) out-

put; whereas in ours, he must be coerced into choosing a much more complicated

object (a particular probability distribution) then reporting honestly.

2 The Model

There is an unknown state of the world θ ∈ Θ, where |Θ| = n < ∞; and both

principal and agent share a common full support prior µ ∈ ∆ (Θ). The principal

(she) has a continuous (reduced-form) payoff function over posteriors x ∈ ∆ (Θ),

V (x).4 The principal cannot acquire information herself but instead must rely on

the assistance of an agent (he), who acquires information by conducting a costly

experiment. As shown in Kamenica and Gentzkow (2011), this is equivalent to

him choosing a distribution over posteriors F ∈ ∆∆ (Θ) that is Bayes-plausible:

EF[x] = µ. The agent’s cost of acquiring F, denoted by C(F), is posterior separable

à la Caplin et al. (2022); that is,

C (F) = κ

∫
∆(Θ)

c (x) dF (x) ,

where κ > 0 is a scaling parameter, c : ∆ (Θ) → R+ is a strictly convex and twice

continuously differentiable function bounded on the interior of ∆ (Θ), and c (µ) =

0.5

4This could correspond, for example, to a decision problem faced by the principal.

5This class of information costs includes the entropy-based cost function (see e.g. Sims (1998,

2003), and Matějka and McKay (2015)); the log-likelihood cost of Pomatto et al. (2023); the
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After acquiring information, the agent sends a message to the principal. The

true state is eventually observable to both parties after the principal’s value is real-

ized and can be contracted upon. A contract specifies the set of messages available

to the agent, and a transfer paid to the agent which can be contingent on both the

realized state and the message sent. Formally, the principal proposes a pair (M,t)

consisting of a compact set of messages M available to the agent, and a transfer

t : M ×Θ → R (t : M ×Θ → R+ when the agent is protected by limited liability).

We assume the principal’s payoff is quasi-linear in the transfer. The agent’s pay-

off is additive separable in his utility from the transfer and the cost of acquiring

information, and he values the transfer according to a continuously differentiable,

concave, and strictly increasing function v, with v (0) = 0. To ease presentation,

transfer t is expressed in utils.

We further assume the agent has access to an outside option of value v0 ≥ 0, and

that there are two chances for him to leave with his outside option: he can choose

not to accept the contract, or walk away after acquiring information by reporting

nothing. In doing so, the agent sends the “null message,” ∅.6

Unless otherwise noted, we assume throughout that the principal suffers a

penalty that is strictly greater than v0 if the agent takes his outside option.7 This

ensures that it is not optimal for the principal to offer the agent a contract in which

he ever takes his outside option. In the discussion following Theorem 4.3, we argue

that our framework can accommodate “shoot the messenger” contracts–in which

the agent is asked to exit the relationship with positive probability on path–with

ease.

neighborhood-based cost function studied by Hébert and Woodford (2021); and the quadratic (pos-

terior variance) cost function.

6More generally, the agent’s outside option could derive from some salvage value for informa-

tion that is an arbitrary upper semicontinuous function of the posterior p (x). In the supplementary

appendix, we explain that this does not alter our analysis in a meaningful way.

7This captures the cost of hiring a new agent, for example.
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The timing of the game is as follows:

(i) The principal proposes a contract (M,t);

(ii) If the agent does not accept, the game ends, and the agent and principal re-

ceive v0 and V (µ), respectively; otherwise the agent chooses a Bayes-plausible

distribution F, from which a posterior x ∈ ∆ (Θ) is drawn and privately ob-

served by the agent;

(iii) The agent chooses whether to report. If he reports, he sends a message m ∈M;

and if he does not report, he takes his outside option v0 (and the principal

observes the null message);8

(iv) Payoffs accrue: given belief x (m) induced by message m, the principal gets

V (x (m))−Ex(m)v
−1 (t (m,θ)) and the agent Ex(m)t (m,θ)− c (F).

3 The Principal’s Problem

3.1 The First Best Benchmark

Denote the set of Bayes-plausible distributions over posteriors by F(µ). It is a

convex and compact subset of ∆∆ (Θ). If the principal controlled the information

acquisition, she would solve

max
F∈F(µ)

∫
(V −κc) dF ,

which is a linear functional of F, guaranteeing the existence of a maximizer. In our

context, “first best” refers to the situation where the principal can observe the dis-

tribution over posteriors chosen by the agent, so the principal can specify transfer

t : ∆∆ (Θ)→ R+. When the distribution is observable, the following contract im-

plements any distribution F and is optimal: the principal pays the agent precisely

8If the optimal contract is such that the null message, ∅, is off-path (as it will be provided

the principal incurs a sufficiently large cost from the agent exiting the relationship), the principal

obtains V (µ). If ∅ is on-path, corresponding to posterior x′ , the principal gets V (x′).
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the amount that makes him indifferent between learning and walking away with

his outside option if and only if the agent acquires F. Otherwise, the principal pays

the agent nothing. Evidently, the transfer is never strictly negative, and the agent

is willing to acquire F. Therefore, at the first best, the principal’s cost of acquiring

information is v−1 (C(F) + v0).

3.2 The Contracting Problem

A contract must guarantee that the agent chooses the right distribution and reports

honestly. Without loss of generality, every message contained in the message space

M–except for the null message ∅–uniquely identifies a posterior in the support of

F,9 and hence M = supp(F) ∪ {∅}. We say that a distribution F is implementable

if choosing F and reporting truthfully is an optimal strategy for the agent follow-

ing some contract offer. Equivalently, the contract (M,t) implements F. F can be

implemented efficiently if it can be implemented at the first-best cost.

Any contract (M,t) offered to the agent produces a value function

W (x)Bmax
m∈M

Ex [t (m,θ)]−κc (x) ,

which is the highest payoff the agent can obtain–if he accepts the contract and

does not walk away after acquiring information–when his posterior is x. By con-

struction, W is continuous and piecewise strictly concave. The agent chooses a

distribution over posteriors to maximize his ex ante value.

Caplin et al. (2022) observe that the agent’s optimal behavior corresponds to

the hyperplane that is tangent to the concavified value function at the prior µ.10

We denote this hyperplane by H and sometimes refer to it as the concavifying hy-

perplane. As is standard, we can identify this supporting hyperplane H with an

9The support of a distribution, denoted by supp(·), is the smallest closed set that has probability

one.

10The concavified value function is the pointwise lowest concave function that majorizes the

value function.
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affine function fH (x) : ∆(Θ) → R. This hyperplane is the central object in our

contracting problem under study: as we will shortly discover, the principal’s im-

plementation problem is essentially one of choosing this hyperplane, which pins

down the required transfers. The agent’s optimal ex ante value is given by fH(µ).

Caplin et al. (2022) point out that the optimal posteriors are the points at which

this hyperplane intersects W ; we denote the set of such points by P(M,t):

P(M,t)B {x ∈ ∆ (Θ) : fH (x) = W (x)} .

By construction, at every x ∈ P(M,t), it is optimal for the agent to report the realized

posterior honestly. Therefore, a necessary condition for a distribution F to be im-

plemented by a contract (M,t) is that supp(F) = P(M,t).11 This need not be sufficient

for implementation: the contract must also prevent the agent from walking away

at any point in the interaction. In particular, no matter what the realized posterior

is, the agent cannot deviate profitably by taking his outside option without making

a report; this requires

fH (x) ≥ v0 −κc(x) for all x ∈ ∆(Θ) . (IR− v0)

As this constraint imposes restrictions ex interim, we often call it the interim indi-

vidual rationality constraint (or participation constraint).12 It is stronger than the

ex ante participation constraint fH(µ) ≥ v0.

Thus,

Lemma 3.1. A contract (M,t) implements distribution F if and only if

(i) Incentive Compatibility: supp(F) = P(M,t); and

(ii) Individual Rationality: Constraint IR− v0 holds; and

(iii) (Ex Post) Limited Liability: if there is limited liability, t(m,θ) ≥ 0 for all θ ∈Θ

and m ∈M.

11Technically, this is incorrect: the necessary condition is that supp(F) ⊆ P(M,t). The stated equal-

ity anticipates Proposition 4.2, in which we argue that WLOG F has affinely-independent support.

12The relevance of this constraint is illustrated in an example in Section 3.3.
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The individual rationality constraint (IR− v0) is similar to the (interim) limited

liability constraint in Rappoport and Somma (2017) (p.11)–since Rappoport and

Somma (2017) allow for contracting upon the realized posterior, their limited lia-

bility is of ex interim nature. Indeed, (IR− v0) requires that the value of the agent

at any posterior in the support of the desired distribution (i.e., at the interim stage)

cannot be too low. Here, this is a consequence of preventing the agent from learn-

ing according to a different distribution and not making a report following some

posterior (rather than the direct imposition of Rappoport and Somma (2017)). We

stick to the term “individual rationality” because it also ensures that the agent ac-

cepts the contract ex ante and prefers not to send the null message ex interim. Lim-

ited liability (iii) in our work imposes restrictions ex post. This concern is absent

from Rappoport and Somma (2017), as contracts there are not state-contingent.

To streamline exposition, we frequently drop “ex post” and refer to this constraint

merely as “limited liability.”

To solve the principal’s contracting problem, we adopt a two-step approach:

first, for every implementable distribution F, we solve the principal’s cost mini-

mization problem:

min
(M,t)

EF,x

[
v−1 (t (x,θ))

]
, (‡)

subject to (i), (ii), and (iii) in Lemma 3.1; denote its value by Γ (F). Second, the

principal chooses an implementable distribution F to maximize her payoff under

agency,
∫
V (x)dF(x)− Γ (F). Like most papers studying moral hazard, we focus on

the first step.

3.3 An Example

Let Θ = {θL,θH } and x denote the posterior probability that the state is θH . Sup-

pose the principal intends to implement distribution {xL,xH }. Consider the con-

tract (M̃, t̃) where M̃ = {xL,xH ,∅}, xL = 1/4 and xH = 3/4, and t̃ is such that t̃(xL,θL) =

1.0125, t̃(xL,θH ) = 0, t̃(xH ,θL) = 0.0125, and t̃(xH ,θH ) = 1. The gross payoff to the
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Figure 1: Contract (M̃, t̃) fails to implement {xL,xH }, where xL = 1/4 and xH = 3/4,

when µ = 3/5, κ = 2, and v0 = 0.65, and with quadratic cost: c(x) = (x − µ)2. This

contract satisfies the limited liability constraints, but the interim IR (IR− v0) is

violated.
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agent from sending message m ∈ {xL,xH }, as a function of posterior x, is given by

Ex[t̃(m,θ)] = xt̃(m,θH ) + (1− x)t̃(m,θL).

This example is illustrated in Figure 1. The blue and purple lines depicts the gross

payoff to the agent from sending xL and xH , respectively. The maximum of these

functions, net of the agent’s learning cost, is the agent’s induced value function, W ,

depicted in black. The concavifying line fH–which pins down the agent’s optimal

learning–is in orange. Finally, the agent’s net payoff from taking the outside option

v0 is the dashed red curve.

If we ignore the individual rationality constraint, the contract (M̃, t̃) induces

the agent to acquire {xL,xH } and report truthfully because incentive compatibility

holds: as shown in the upper panel of Figure 1, the optimal posteriors for the agent

are the points at which fH intersects W , which are indeed {1/4,3/4}. However,

the IR constraint is violated because fH does not lie entirely above v0 − κc, which

prevents the principal from implementing her desired distribution.13 As shown in

the lower panel of Figure 1, the agent can profitably deviate by acquiring {x1,x2}:14

if x1 realizes he opts out by sending message ∅ and takes his outside option, and

he reports xH if x2 realizes. This way, his ex ante payoff is given by the line through

(x1,v0 − κc(x1)) and (x2,W (x2)) (depicted in green) evaluated at the prior µ, which

is strictly higher than fH(µ).

4 Preliminary Results

We begin by arguing that any distribution over posteriors with support on n or

fewer points can be implemented by some contract.

13This example also illustrates that interim IR is stronger than ex ante IR: as shown in the upper

panel, fH(µ) = v0 −κc(µ) = v0, and hence ex ante IR holds.

14In this example, x1 = 0.522 and x2 = 0.766.
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Lemma 4.1. If F is a distribution over posteriors with |supp(F)| ≤ n and supp(F) ⊆

int∆(Θ), there exists a contract (M,t) that implements F, and the expected cost to the

principal is finite.

The proof of Lemma 4.1, and all other proofs omitted from the main text, are

collected in Appendix A. For each F supported on n or fewer interior points of

∆(Θ), because the cost function c is bounded and differentiable on int∆(Θ), Lemma

2 of Caplin et al. (2022) guarantees that there is a decision problem such that F

is optimal. Therefore, we can construct a contract with bounded transfers such

that the agent finds it optimal to first acquire F then report the realized posterior

truthfully. Moreover, by adding a finite constant to the transfer, we can make

Constraint IR−v0 hold. Therefore, every such distribution can be implemented at

finite cost.

Because the support of any extreme point of F(µ) is on n or fewer affinely-

independent points, any F ∈ F(µ) can be obtained by randomizing over a set of

contracts each of which implements a distribution with support on at most n

affinely-independent points–consequently, any distribution whose support is on

the interior of ∆ (Θ) can be induced at a finite expected cost. As it is cheaper for

the principal to randomize first rather than implement F directly, it is without loss

of generality for the principal to implement a distribution over posteriors with

support on at most n affinely-independent points.

Proposition 4.2. (i) Every F ∈ F(µ) with supp(F) ⊆ int∆(Θ) can be implemented

at a finite cost.

(ii) Without loss of generality, the principal only implements distributions with sup-

port on at most n affinely-independent points.

By Proposition 4.2 (ii), we can restrict our attention to distributions over pos-

teriors with support on {x1,x2, . . . ,xs}, where n is the number of states, and s ≤ n.

In our next result, we discover that incentive compatibility allows us to reduce

transfers to a single variable for each state.
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For each state k = 1, . . . ,n, define Ωk (i, j) B tki − t
k
j (i, j = 1, . . . , s), where tki :=

t(xi ,θk) is the promised payment to the agent from sending message i in state k.

Accordingly, each Ωk (i, j) specifies the difference between the payoff to the agent

from sending any message i versus message j in state k. Importantly, because (on

path) each message corresponds to a different posterior, the collection of differ-

ences
(
Ωk (i, j)

)n
k=1

captures the relative benefit to the agent from obtaining poste-

rior j rather than posterior i.

Theorem 4.3. The relative incentives
(
Ωk (i, j)

)
i,j=1,...,s;k=1,...,n

are completely pinned

down by incentive compatibility.

Consequently, the principal’s problem of optimally inducing a distribution over pos-

teriors reduces to an n-variable optimization problem, where n is the number of states.

For each state k, the principal fixes a benchmark message j (k), then chooses
(
tkj(k)

)n
k=1

;

the payoff to the agent from sending message j (k) in state k.

Theorem 4.3 is reminiscent of the standard result that truthtelling only iden-

tifies relative payments in adverse selection settings. Here; however, the relative

incentives are pinned down jointly by the optimality of the desired distribution

ex ante and truthful reporting ex interim. As part (i) of Lemma 3.1 states, incen-

tive compatibility for the agent requires that the value function of the agent, W ,

intersects the concavifying hyperplane at the support points of the distribution

over posteriors the contract aims to implement. Such a hyperplane pins down the

transfers in each state for each posterior in the support of the agent’s learning.

Consequently, the principal’s problem is equivalent to one of choosing a hyper-

plane, which is an n-variable optimization problem.15

That was a technical explanation, here is an economic one. Fix a desired dis-

tribution; if the agent wants to deviate by slightly increasing the probability of a

message realization in a certain state, basic probability implies that there must be

15Framed in this manner, this theorem is closely related to Lemma 2 in Caplin et al. (2022),

which states that when constructing a decision problem the tangent hyperplane is arbitrary.
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a commensurate decrease in the probability of another message realization in that

state. At the optimum, no such local deviation in the agent’s information acqui-

sition strategy can be profitable. Hence for any two posteriors in the support of

the desired distribution, any deviation of the sort described above must generate a

marginal value to the agent equal to the marginal cost. Because the marginal value

of varying the probability of a message realization in a state is determined by the

transfer for sending that message in that state, this “zero net marginal gain” ob-

servation generates an equality that connects the transfers for sending two distinct

posteriors in the support of the desired distribution in the same state.

Recall that we specified early on that the principal suffers a disutility greater

than v0 should the agent take his outside option. This ensures that the principal

does not want to replace one of the messages with the null message, i.e., have the

agent exit the relationship, sending the null message with positive probability. In

principle, if the principal is not hurt (severely) by the agent’s exit, it could be opti-

mal for the principal to write a contract in which the null message is sent with pos-

itive probability (inducing the desired posterior) thereby allowing the principal to

save on paying the agent. By Theorem 4.3 the belief to which the null message

corresponds pins down the other transfers. Thus, if the principal’s penalty from

an agent’s exit is less than v0, one must check at most s additional contracts (other

than those in which the null message is never sent), in which the null message is

sent after each belief, in turn.16

16In the supplementary appendix we discuss an example in which it is optimal for the agent to

exit the relationship with positive probability.
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5 Main Results I. No (Ex Post) Limited Liability

5.1 Risk-Neutral Agent

We first assume that the agent is risk neutral; without loss of generality, v (·) = ·.

Theorem 4.3 implies that choosing a contract is tantamount to choosing a concav-

ifying hyperplane H. Recalling that fH is the function that identifies H, and the

agent’s value from acquiring information for the principal (from an ex ante per-

spective) is fH(µ). To implement distribution F efficiently, the principal must only

pay the first best cost, namely v−1(C(F) + v0) = C(F) + v0. Hence, efficient imple-

mentation requires fH(µ) = v0. Furthermore, for (IR− v0) to hold, the graph of fH

must lie entirely above the graph of v0 − κc. Then, because fH is affine and c is

strictly convex,

Observation 5.1. When the agent is risk neutral, a principal can implement a distri-

bution efficiently if and only if fH is tangent to v0 −κc at µ.

Applying Observation 5.1, efficient implementation is equivalent to the follow-

ing n conditions:

tkj − t
n
j −κck

(
xj
)

= −κck (µ) for all k = 1, . . . ,n− 1, (IR−R)

and fH(µ) = v0. We are able to pick an arbitrary support point xj of F, as imple-

mentability requires that at each x ∈ supp(F), the agent’s value function W induced

by the contract intersects the same supporting hyperplane (H).

By Theorem 4.3, the solution to this system,
(
tkj
)n
k=1

, if it exists, identifies a

contract. Accordingly, whether a distribution can be implemented efficiently boils

down to whether the system of equations defined by the n − 1 equations in Con-

straint IR−R and fH(µ) = v0 has a solution. A solution always exists:

Proposition 5.2. If the agent is risk neutral and not protected by limited liability, every
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(feasible) distribution F with supp(F) ⊆ int∆(Θ) can be implemented efficiently.17

When there is no limited liability, the amount of incentive constraints is “just

right” such that there exists a transfer scheme that delivers the right incentives

and keeps the agent’s surplus at his outside option. Figure 2 illustrates this con-

struction: the principal can always find a contract such that the concavifying hy-

perplane fH (depicted in orange) of the agent’s value function W (in black) is a

supporting hyperplane of the graph of v0 −κc (the red curve), which is the agent’s

payoff from exiting the relationship. Therefore, the interim IR constraint (IR− v0)

is always satisfied. The following Interactive Link illustrates the optimal contract

(for an arbitrary binary distribution with support {l,h}) when there are two states,

the agent’s information acquisition cost is entropy-reduction, and his outside op-

tion is 0.

It is instructive to compare Proposition 5.2 to Proposition 2 in Rappoport and

Somma (2017), which states that when the realized posteriors are contractible (but

the true state is not), efficient implementation is possible when the agent is risk

neutral, even if he is protected by limited liability. As we discussed after Lemma

3.1, their limited liability is of ex interim nature, and is similar to our individ-

ual rationality constraint (IR− v0). Consequently, one interesting way to interpret

Proposition 5.2 is that so long as the realized state can be contracted upon, Rap-

poport and Somma (2017)’s Proposition 2 still holds when the principal must elicit

the agent’s belief instead of being able to contract on it.

However, if we require ex post limited liability, for some distributions and out-

side option values, efficient implementation cannot be achieved (irrespective of the

interim IR constraint’s presence). In our model, to induce the agent to gather in-

formation, the transfers must be “rewarding” when the agent “gets the state right”

and “punishing” when he is wrong. This gap between the two outcomes must be

17The supplementary appendix reveals that this holds even when there are uncountably many

states.
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Figure 2: Efficient implementation of {xL,xH }, where xL = 1/9 and xH = 5/9, when

µ = 1/ (1 + e), κ = 1, v0 = log {9/(1 + e)}, and with entropy cost. This contract satis-

fies the limited liability constraints–as stated in Proposition 6.3, the specified ratio

v0/κ is the minimum such ratio such that efficient implementation is feasible un-

der limited liability.
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large enough to justify the cost of learning. Therefore, when v0 is small enough,

to achieve an expected transfer of Γ (F) = C(F) + v0, some “punishing” transfer(s)

must be negative.

5.1.1 Comparison toClassicalMoralHazardwith an InterimParticipationCon-

straint

A natural question is whether an analog of Proposition 5.2 holds if we add in an

interim participation constraint to the canonical moral hazard problem. That is, is

the ability of the principal to accommodate the interim participation constraint a

special feature of our information acquisition problem or does it also hold in the

classical environment?

As we show in the supplementary appendix, in the classical environment, the

ability of the agent to exit the relationship after (privately) observing his output

realization is tantamount to limited liability: clearly a contract cannot promise the

agent a payoff less than his outside option for any (divulged) output. Moreover,

because a contract must be incentive compatible, unless the principal implements

the lowest possible effort, i.e., pays a constant wage, the agent must get strictly

positive rents.

5.1.2 Selling the Project to the Agent?

One might also wonder whether Proposition 5.2 is really needed. In the standard

moral hazard problem, when the agent is risk neutral and there are no limited

liability constraints, the principal can attain the first best by “selling the project to

the agent” (henceforth the STP contract). In our setting,18 that corresponds to the

principal writing the contract such that the agent’s net utility as a function of his

18We are also assuming here that the set of actions in the principal’s decision problem is finite.

The construction when the principal has infinitely many actions is analogous but more ungainly,

so we omit it.
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posterior x is V (x) − κc (x) − τ , where τ = fH (µ) − v0. That is, the principal writes

a contract so that the agent’s problem, gross of the cost, is precisely that faced by

the principal, then lowers the transfers to the agent uniformly to leave his ex ante

expected payoff equal to his outside option.

Already, the similarity between our interim IR constraint and (interim) limited

liability suggests that this may not be possible (generically). Indeed, that is so in

the standard moral hazard setting. This hunch is correct: when the agent can exit

ex interim, the principal cannot implement a distribution over posteriors at the

first-best cost generically by selling the project. Recall that the optimal contract

must be robust to double deviations in which the agent learns differently then

takes her outside option with positive probability: fH must lie everywhere above

v0 − κc (x). Moreover, efficient implementation is even more demanding: fH must

be tangent to v0−κc (x) at µ. As we show in the supplementary appendix, this tan-

gency property is a non-generic property of the principal’s information acquisition

problem.

5.2 Risk-Averse Agent

When the agent is risk averse, but unprotected by limited liability, characterizing

the optimal contract is more involved. Fix an arbitrary benchmark message for all

states, say j; the principal’s payoff is strictly decreasing in each of the n control

variables
(
tkj
)n
k=1

and so the principal wants to set each one as low as possible.

Unencumbered by limited liability, the lone constraint is IR−v0, which necessarily

binds (since otherwise, the principal could reduce the control variables). Thus,

Observation 5.3. When the agent is risk averse, there exists an x∗ ∈ ∆ (Θ) such that

fH (x) is tangent to v0 −κc (x) at x∗.

Given this, solving for the optimal implementation of a distribution over poste-

riors F can be turned into an n−1 variable optimization problem by using the tan-

23



gency conditions to substitute in for each tkj . This yields the principal an objective

that is a function of x∗.19 Unless x∗ = µ, which does not hold in general, the agent

obtains positive rents. This finding is a consequence of the interim participation

constraint, which requires that fH lie above v0 − κc everywhere. Otherwise–with

only ex ante IR–the agent would not obtain rents. Indeed, without the interim IR

constraint, the lone constraint is the ex ante participation constraint, which obvi-

ously binds; hence, fH (µ) = v0. Importantly, the agent’s risk aversion engenders

inefficiencies: the agent must be exposed to risk in order to acquire information

and report honestly, which destroys surplus due to his risk aversion.

Proposition 5.4. Suppose the agent is risk averse and not protected by limited liability.

(i) For every distribution over posteriors F with support in int∆(Θ), an optimal con-

tract exists, and the transfers can be found by choosing x∗ ∈ ∆ (Θ).

(ii) If the agent can exit ex interim, he gets strictly positive rents unless x∗ = µ. If the

agent cannot exit ex interim, he gets zero rents.

(iii) Only the degenerate distribution of posteriors can be implemented efficiently.

In choosing x∗, the principal optimally trades off between risk sharing and con-

ceding rents: when a contract that makes the agent break even entails too much

risk, moving x∗ away from µ mitigates this risk. Then, although the agent receives

strictly positive rents, implementing the new contract can be cheaper to the prin-

cipal. This is reminiscent of the trade-off studied in Proposition 5 in Rappoport

and Somma (2017) though the exact mechanisms are different:20 in their work, the

19More precisely, for each x∗ ∈ ∆ (Θ),
(
tkj
)n
k=1

can be solved from the following n equations: tkj −t
n
j −

κck
(
xj
)

= −κck (x∗) for all k = 1, . . . ,n− 1, and fH (x∗) = v0 −κc (x∗). Moreover, the relative incentives

identified in Theorem 4.3 allow us to obtain the other transfers. Plugging the transfers into (‡), the

principal’s objective can then be written as a function of x∗.

20The resemblance stems from the fact that our interim IR constraint is similar to the (interim)

limited liability constraint in Rappoport and Somma (2017), which leads to similar tangency con-

ditions.
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most cost-efficient way for compelling the agent to choose the right distribution is

to have the hyperplane determined by the wage contract (which, in their setting, is

a function of the verifiable posterior) to be tangent to the agent’s value function. In

our problem, averting double deviations to the outside option is what begets the

tangency condition mentioned in Observation 5.3.

6 Main Results II. (Ex Post) Limited Liability

Throughout this section, we assume that the agent is protected by limited liability.

In Subsection 6.1, we solve for the optimal incentives when the agent’s value for

his outside option is sufficiently small. In Subsection 6.2, we allow for an arbitrary

outside option but impose that the agent is risk neutral.

6.1 Low Outside Option

For simplicity, we set v0 = 0; it is not hard to see that all the results in this subsec-

tion go through for all sufficiently small v0 > 0. By Theorem 4.3, for any desired

distribution, the relative incentives are identified. Consequently, for each state we

can pinpoint a benchmark message that determines the lowest payment.

Lemma 6.1. For every state k = 1, . . . ,n, there exists j∗(k) such that t
(
xj∗(k),θk

)
≤

t (xi ,θk) for all i = 1, . . . , s.

Lemma 6.1 allows us to completely identify the optimal transfers when the

agent’s outside option is sufficiently low.

Proposition 6.2. Suppose v0 = 0, and the agent is protected by limited liability. Then

for each state k = 1, . . . ,n, there exists j∗(k) such that t
(
xj∗(k),θk

)
= 0, and all other

transfers are nonnegative and determined by the relative incentives identified in Theo-

rem 4.3.
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Proposition 6.2 is intuitive: for a sufficiently small outside option, Constraint

IR − v0 always holds, so the transfer scheme is pinned down by optimal learning

and limited liability. Optimal learning leaves, for each state, one degree of free-

dom to the principal; and to satisfy limited liability, the best that the principal can

do is to find the smallest transfer in each state and set it to zero. The following In-

teractive Link illustrates the optimal contract (for an arbitrary binary distribution

with support {l,h}) when there are two states, the risk-neutral agent’s information

acquisition cost is entropy-reduction, and his outside option is 0.

6.2 Risk-Neutral Agent

Now, we dispense with the assumption that the outside option is small–v0 can take

any value. For expository ease, we start with the two state case and then argue that

our results generalize when there are more than two states.

6.2.1 Two States

When there are just two states, Θ = {θ1,θ2}. By Proposition 4.2 (ii), we can iden-

tify a distribution by its support {xL,xH }. Our first result characterizes the dis-

tributions over posteriors that a principal can implement efficiently; viz., at the

first-best cost. Defining

η (xL,xH )Bmax
{
−µc′ (µ)− c (xH ) + c′ (xH )xH , (1−µ)c′ (µ)− c (xL)− (1− xL)c′ (xL)

}
,

we have

Proposition 6.3. The principal can implement {xL,xH } efficiently if and only if v0/κ ≥

η (xL,xH ).

Proposition 6.3 states that a given distribution can be implemented efficiently

if and only if either the agent has a sufficiently high outside option, or he can

acquire information sufficiently cheaply. Intuitively, efficient implementation un-

der limited liability requires that (1) the average payment to the agent net of the
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cost of information acquisition is v0 (and Proposition 5.2 shows that (IR− v0) can

be satisfied by “tilting the hyperplane”), and (2) the payments from sending the

“wrong message” in both states cannot be negative. (1) and (2) together imply that

the differential payments between the “right message” and the wrong one cannot

be too large compared to v0. The differential payments are exactly the relative in-

centives identified in Theorem 4.3, which are pinned down jointly by the desired

distribution and model primitives (i.e., κ and c). This produces the inequality in

Proposition 6.3.

Consequently, as v0 gets larger, efficient implementation is easier. Furthermore,

for a smaller κ or a (Blackwell) less informative distribution, the principal only

needs smaller differential payments to incentivize information acquisition, which

also makes efficient implementation easier to achieve. Therefore, the left-hand

side of Proposition 6.3’s necessary and sufficient condition is strictly decreasing in

the information cost parameter κ. Moreover, the function η is decreasing in xL and

increasing in xH . This suggests the following corollary:

Corollary 6.4. (i) For any pair of posteriors {xL,xH } with 0 < xL ≤ µ ≤ xH < 1, if

v0/κ is sufficiently large, {xL,xH } can be implemented efficiently.21

(ii) Efficient implementation is monotone with respect to the Blackwell order: if {xL,xH }

can be implemented efficiently, then any distribution that corresponds to a less in-

formative experiment can be implemented efficiently.

(iii) If v0 > 0 then any distribution that corresponds to a sufficiently uninformative

experiment can be implemented efficiently.

In the canonical moral hazard problem with a risk-averse agent, no matter what

outside option the agent has, only the lowest action can be implemented efficiently.

Corollary 6.4 has a flavor of that classical result: efficient implementation is pos-

sible whenever the agent is not asked to learn too much. For distributions more

21If c′ (0) and c′ (1) are finite, this is true for any 0 ≤ xL ≤ µ ≤ xH ≤ 1.
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spread out than some set of threshold distributions; however, positive rents must

be provided to the agent. To implement such distributions efficiently it must be

that the relative incentives are high enough for the agent to acquire that much

information and so when v0 is small limited liability is always violated.

When the first-best implementation of {xL,xH } is infeasible, there are three

other possibilities, listed in our next proposition. Denoting γ B t1
2 the transfer

from sending message xL in state θ2, and β B t2
1 the transfer from sending mes-

sage xH in state θ1, we have

Proposition 6.5. One of the following must occur at the optimum. Either

(i) {xL,xH } can be implemented efficiently (and Constraint IR− v0 binds); or

(ii) {xL,xH } cannot be implemented efficiently; and either

(a) Constraint IR− v0 binds and β = 0; or

(b) Constraint IR− v0 binds and γ = 0; or

(c) Constraint IR− v0 does not bind and γ = β = 0.

When the cost function is the entropy cost, it is straightforward to characterize

the four regions of {xL,xH } pairs. They are depicted in Figure 3. Here is an Inter-

active Link, where one can adjust the sliders for m ≡ µ and u ≡ v0
κ , to see how the

optimal contract changes.

6.2.2 Two States and No Interim IR

When there is no interim IR constraint, we need only impose f (µ) ≥ v0 to guaran-

tee that the agent accepts the contract. Defining

ζ (xL,xH )B (1−µ) (xHc
′ (xH )− c (xH ))−µ ((1− xL)c′ (xL) + c (xL)) ,

we have

Proposition 6.6. The principal can implement {xL,xH } efficiently if and only if v0/κ ≥

ζ (xL,xH ). Otherwise, γ = β = 0.
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(a) v0/κ = .05. (b) v0/κ = log(1/ (1−µ)).

(c) v0/κ = 3.

Figure 3: Implementation Regions for µ = 1/2: xL is on the horizontal axis, rang-

ing from 0 to µ = 1/2; and xH is on the horizontal axis, ranging from µ = 1/2 to

1. Pairs (xL,xH ) in the purple region can be implemented efficiently, (xL,xH ) in the

blue region are optimally implemented by γ = β = 0, (xL,xH ) in the orange region

are optimally implemented by β = 0 and some γ ≥ 0; and (xL,xH ) in the red region

are optimally implemented by γ = 0 and some β ≥ 0.
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Figure 4: Implementation Regions for µ = 1/2 and v0/κ = log(1/ (1−µ)) (No In-

terim IR): Pairs (xL,xH ) in the purple region can be implemented efficiently and

(xL,xH ) in the blue region are optimally implemented by γ = β = 0.

It is obvious that an exact analog of Corollary 6.4 holds when there is no in-

terim IR constraint. Viz., any pair of posteriors can be implemented efficiently if

the outside option is sufficiently large and the cost of acquiring information κ is

sufficiently small. Moreover, the more information an agent is asked to acquire,

the more difficult it is to implement the distribution efficiently.

When the cost function is the entropy cost, it is straightforward to characterize

the two regions of {xL,xH } pairs. They are depicted in Figure 4, superimposed over

the four regions present when there is an interim participation constraint.

6.2.3 More Than Two States

By Lemma 6.1, for each state k we can find a message j∗(k) that delivers the lowest

payment; and by Theorem 4.3, to pin down the transfer scheme, it suffices to de-

termine tkj∗(k) for each state k. Thus, there are n unknowns. When we impose the
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interim IR constraint, there are n equations: efficient implementation is equivalent

to fH(µ) = v0, and the other n− 1 equations are given by Constraint IR−R:

tkj − t
n
j −κck

(
xj
)

= −κck (µ) ,

where k = 1, . . . ,n − 1 indicates the state, and j, which indexes the posterior, is

arbitrary. Then the distribution can be efficiently implemented if and only if tkj∗(k) ≥

0 for each k; consequently, Proposition 6.3, Corollary 6.4 (i), Proposition 6.5, and

Proposition 6.6 naturally extend to more than two states.

7 Discussion

We conclude by discussing a couple of our assumptions.

Agent has no intrinsic preferences for learning. We make this assumption to

zero in the incentive provision problem when the principal has to delegate infor-

mation acquisition to an agent who cannot make verifiable reports. To allow the

agent to have intrinsic motivation, we assume that the agent’s intrinsic value from

posterior x is φ(x), which is known to both parties. Then it is as if the agent’s cost

of arriving at posterior x is κc(x)−φ(x), and all of our results survive intact.

Restricted learning. Our agent is unconstrained in how she learns: she may

choose any Bayes-plausible distribution. How might our results change if the

agent instead could only choose from some subset thereof? In general, such re-

strictions must make implementation (of those available distributions) cheaper, as

the agent has fewer possible deviations. A corollary of this observation (proved in

the supplementary appendix), is that the principal can implement any (feasible)

distribution efficiently if the agent is risk neutral and there are no (ex post) limited

liability constraints.
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A Omitted Proofs

A.1 Lemma 4.1 Proof

Proof. Let supp(F) = {x1,x2, . . . ,xs}, where s = |supp(F)| ≤ n. Consider a contract

(M,t) where M = supp(F), and for each j = 1, . . . , s,

t
(
xj , θk |τ

)
= κc

(
xj
)
−

n−1∑
i=1

xijκci
(
xj
)

+κck
(
xj
)

+ τ for all k = 1, . . . ,n− 1 ,

t
(
xj , θn|τ

)
= κc

(
xj
)
−

n−1∑
i=1

xijκci
(
xj
)

+ τ ,

where xij is the i-th entry of xj , ci is the partial derivative of c with respect to its

i-th entry, and τ is a constant that scales the transfers.

For any m ∈M, we define the agent’s net utility N (x|m) as the expected utility

of sending message m net of the cost of x:

N (x|m) = Ex [t (m,θ)]−κc (x) .

Let G be a distribution over posteriors, and let σ : ∆(Θ)→ ∆(M) denote a reporting

strategy. Then, the agent’s ex ante value of choosing (G,σ ) is given by

Υ (G,σ ) =
∑

x∈supp(G)

∑
m∈M

G(x)σ (m|x)N (x|m) .

We claim that (F,σ ∗), where σ ∗( · |xj) = δxj is an optimal strategy for the agent.22

By Lemma 1 in Caplin et al. (2022), it suffices to show that, for every xj , j = 1, . . . , s,

there exists a n− 1 dimensional vector λ = (λ1, . . . ,λs) such that

N (x|m)−
n−1∑
i=1

λix
i ≤N

(
xj
∣∣∣xj)− n−1∑

i=1

λix
i
j ,

22δxj denotes the degenerate distribution at xj ; that is, the agent truthfully reports the posterior

that he obtained from learning.
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for all x ∈ ∆(Θ) and m ∈ M. We set λ to be the zero vector, so the above in-

equality reduces to N (x|m) ≤ N
(
xj
∣∣∣xj). We first show that for any fixed m ∈ M,

N (x|m) ≤ N
(
xj
∣∣∣m)

, and then we show that N
(
xj
∣∣∣m)
≤ N

(
xj
∣∣∣xj). To establish the

first inequality, since c(x) is strictly convex, the first-order conditions (FOCs) are

sufficient; the FOCs are

t (m, θi |τ)− t (m, θn|τ)−κci (x) = κ
(
ci
(
xj
)
− ci (x)

)
= 0 for all i = 1, . . . ,n− 1 ,

clearly setting x = xj makes all of them hold. For the second inequality,

N
(
xj
∣∣∣xj)−N (

xj
∣∣∣m)

= κ

c (xj)− c (m)−
n−1∑
i=1

(
xij −mi

)
ci(m)

 ≥ 0 ,

where mi is the i-th coordinate of m, and the inequality follows from the convexity

of c. Therefore, (F,σ ∗) is indeed optimal, and it is direct that the agent’s payoff is

Υ (F,σ ∗) = τ . Moreover, there exists τ∗ < ∞ large enough, since c is bounded and

differentiable on int∆(Θ), such that Constraint IR−v0 holds. Thus, contract (M,t)

implements F. The principal’s expected cost is finite since t
(
xj , θk |τ∗

)
is finite for

all j,k. ■

A.2 Proposition 4.2 Proof

Proof. Let extF(µ) denote the set of extreme points of F(µ). Because F(µ) is convex

and compact, by Choquet’s theorem, for any G ∈ F(µ) there exists a probability

measure ΛG that puts probability 1 on extF(µ), and

G =
∫

extF(µ)
H dΛG(H) . (R)

Therefore, any distribution G with support on int∆(Θ) can be obtained by ran-

domizing over distributions supported on at most n affinely-independent points.

Then by Lemma 4.1, G can be implemented at a finite cost by randomizing over

contracts we constructed therein. This establishes part (i).
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For part (ii), suppose there exists a contract (M,t) under which the agent chooses

G, where |supp(G)| > n, and (G,σ̂ ) is the induced optimal strategy of the agent.

Without loss of generality, M = supp(G) and σ̂ ( ·|x) = δx for all x ∈ supp(G). Then

for every posterior x ∈ supp(G) and every m ∈M with σ̂ (m|x) > 0,

N (x|m) +
n−1∑
i=1

(t (m,θi)− t (m,θn)−κci (x)) (x̃i − xi) ≥N ( x̃|m′) (H)

for all x̃ ∈ ∆(Θ) and m′ ∈ M. By Equation R, for every F ∈ supp(ΛG), and ev-

ery posterior x, x ∈ supp(G). Hence, the strategy
(
F, σ̂

∣∣∣
supp(F)

)
is also optimal for

the agent since Inequality H holds for every x ∈ supp(F) and every m ∈ M with

σ̂
∣∣∣
supp(F)

(m|x) > 0. Now it is direct that each F ∈ supp(ΛG) can be implemented by

the contract (MF , tF) where MF = supp(F), and tF is the restriction of t to MF ; thus,

G can be implemented at the same cost by randomizing over supp(ΛG).

Note that; however, for all F ∈ supp(ΛG), (MF , tF) need not be the least costly

contract under which the agent chooses F: randomizing over supp(ΛG) and find-

ing the least costly contract for each F is at least cheaper than (M,t). Therefore,

without loss of generality, the principal only implements distributions with sup-

port on at most n affinely-independent points. This concludes the proof of part

(ii). ■

A.3 Theorem 4.3 Proof

Proof. The principal wants to implement a distribution F using some contract

(M,t). By part (i) of Lemma 3.1, a necessary condition for implementation is that

supp(F) = P(M,t); this condition holds if and only if the contract is such that the
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following s expressions

n−1∑
k=1

xk1t
k
1 +

1− n−1∑
k=1

xk1

 tn1 −κc (x1) +
n−1∑
k=1

(
tk1 − t

n
1 −κck (x1)

)(
xk − xk1

)
n−1∑
k=1

xk2t
k
2 +

1− n−1∑
k=1

xk2

 tn2 −κc (x2) +
n−1∑
k=1

(
tk2 − t

n
2 −κck (x2)

)(
xk − xk2

)
...

n−1∑
k=1

xks t
k
s +

1− n−1∑
k=1

xks

 tns −κc (xs) +
n−1∑
k=1

(
tks − tns −κck (xs)

)(
xk − xks

)
,

define the same hyperplane, where tkj B t
(
xj ,θk

)
, xij is the i-th entry of xj , and

ci is the partial derivative of c with respect to its i-th entry. Accordingly, for all

k = 1, . . . ,n− 1 and i, j = 1, . . . s

tki − t
n
i −κck (xi) = tkj − t

n
j −κck

(
xj
)

and tni = tnj +Ξij ,

where Ξij is some function of the primitives (but not directly of the ts). Combining

these two equations, we obtain

Ωk (i, j) = κck (xi)−κck
(
xj
)

+Ξij , for k = 1, . . . ,n− 1 and Ωn(i, j) = Ξij .

Accordingly, for each state k = 1, . . . ,n, once the principal chooses the transfer

for one of the messages in state k, the transfers for all other messages are automat-

ically pinned down. In other words, the principal has one degree of freedom for

each of the states. In every state k = 1, . . . ,n, and for every i, j = 1, . . . , s, we can write

tki = tkj +Ωk (i, j). ■

A.4 Proposition 5.2 Proof

Proof. Let F be such that supp(F) = {x1, . . . ,xs} ⊆ int∆(Θ), where s ≤ n. As noted in

the main text, there are n−1 equations given by Constraint IR−R: tkj −t
n
j −κck

(
xj
)

=

−κck (µ) for all k = 1, . . . ,n − 1, and efficient implementation requires fH(µ) = v0,
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which can be written as
n−1∑
k=1

(
tkj − t

n
j −κck

(
xj
))
µk + tnj = Q ,

where µk is the k-th entry of µ, and Q does not depend on t’s. To show that F can be

efficiently implemented, it suffices to find a solution of this system of n equations.

Using IR−R, the equality above can be reduced to tnj = Q+
∑n−1

k=1κµkck (µ); plugging

this into the other n−1 equations, we get tkj = Q+
∑n−1

i=1 κµici (µ) +κ
(
ck
(
xj
)
− ck (µ)

)
for each k = 1, . . . ,n. We have thus found a solution. Because F is an arbitrary

distribution over posteriors supported on at most n points, the principal can im-

plement any distribution G with supp(G) ⊆ int∆(Θ) efficiently by randomizing ex

ante. ■

A.5 Proposition 5.4 Proof

Proof. Suppose first that the agent can exit ex interim. Because c is strictly convex,

v0 − c(x) is strictly concave. By Observation 5.3, fH (x) is tangent to v0 − c(x) at

x∗. Thus, x∗ , µ implies that fH(µ) > v0, and hence the agent gets strictly positive

rents. When the agent cannot exit ex interim, the fact that he gets zero rents is

almost immediate: if fH(µ) > v0, because there is no limited liability, the transfer

can be lowered by some small ε > 0.

Let F be a nondegenerate distribution with supp(F) = {x1, . . . ,xs}, where xi , xj

for all i, j = 1, . . . , s with i , j. Suppose to the contrary that F can be efficiently

implemented. To simplify notation, let xnj := 1 −
∑n−1

k=1 x
k
j for each j = 1, . . . , s. The

principal wishes to minimize
∑s

j=1
∑n

k=1pjx
k
j v
−1

(
tkj
)
. Because F can be efficiently

implemented,

s∑
j=1

n∑
k=1

pjx
k
j v
−1

(
tkj
)

= v−1 (C(F) + v0) = v−1

 s∑
j=1

n∑
k=1

pjx
k
j t

k
j

 .

Because v is strictly concave, v−1 is strictly convex; Jensen’s inequality then im-

plies tkj = t̃ for all k = 1, . . . ,n and j = 1, . . . , s. But then since c is strictly convex,
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learning according to the degenerate distribution is uniquely optimal to the agent,

and hence the contract with constant transfer cannot implement F. A contradic-

tion. ■

A.6 Lemma 6.1 Proof

Proof. Fix any state k and an arbitrary message, say s. Define N (k) =
{
i : Ωk (i, s) < 0

}
.

If N (k) = ∅, let j∗(k) = s; then since tki = tkj∗(k) +Ωk (i, s), we have tkj∗(k) ≤ tki for all i =

1, . . . , s. Otherwise, let j∗(k) be an arbitrary selection of argminj∈N (k)Ω
k(j, s). Opti-

mal learning requires, for any i, tki = tks +Ωk (i, s) and tkj∗(k) = tks +Ωk (j∗(k), s), which

implies tkj∗(k) − t
k
i = Ωk (j∗(k), s)−Ωk (i, s) ≤ 0. Again, tkj∗(k) ≤ tki for all i = 1, . . . , s. ■

A.7 Proposition 6.2 Proof

Proof. By Lemma 6.1, for every state k = 1, . . . ,n, there exists j∗(k) such that tkj∗(k) ≤

tki for all i = 1, . . . , s. Then by setting tkj∗(k) = 0, the agent’s honesty is not affected,

and the limited liability constraints are satisfied. For every i , j∗(k), we have

tki = Ωk(i, j∗(k)) = κck (xi)−κck
(
xj∗(k)

)
+Ξij∗(k)

for each k = 1, . . . ,n− 1; and tni = Ξij∗(n) for i , j∗(n). ■

A.8 Proposition 6.3 Proof

Proof. Without loss of generality αB t1
1 ≥ t1

2 C γ ; and δB t2
2 ≥ t2

1 C β. In this case,

it is convenient to write down the agent’s value function:

W (x) =


α (1− x) + βx −κc (x) , if 0 ≤ x ≤ α−γ

α−γ+δ−β

γ (1− x) + δx −κc (x) , if α−γ
α−γ+δ−β ≤ x ≤ 1

.

Consequently, the equations that pin down the agent’s optimal learning simplify

to

κ (c′ (xH )− c′ (xL)) = A+B and A+κ (c (xH )− c (xL)) = κ (c′ (xH )xH − c′ (xL)xL) ,
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where A B α − γ ≥ 0, B B δ − β ≥ 0. Because c is strictly convex, both A and

B are strictly positive if xL < µ < xH , and zero if xL = xH = µ. Furthermore, the

concavifying line is

f (x) = (β −γ −A−κc′ (xL))x+γ +A−κ (c (xL)− xLc′ (xL)) . (⋆)

The principal chooses γ and β in order to maximize

−γ (1−µ)− βµ− pxHB− (1− p) (1− xL)A ,

where p = (µ − xL)/(xH − xL) is the (unconditional) probability that posterior xH

realizes, subject to limited liability: β,γ ≥ 0, and

f (x) ≥ v0 −κc (x) for all x ∈ [0,1] , (IR-v0)

where F is given in Equation ⋆. By construction, the agent cannot deviate prof-

itably by learning differently and reporting to the principal. Constraint IR-v0 en-

sures that the agent cannot deviate profitably by learning differently and taking

his outside option.

Using the concavifying line (⋆), {xL,xH } can be implemented efficiently if and

only if

(i) (β −γ −A−κc′ (xL))µ+γ +A−κ (c (xL)− xLc′ (xL)) = v0; and

(ii) β −γ −A−κc′ (xL) = −κc′(µ); and

(iii) β,γ ≥ 0.

From (i) and (ii),

γ = v0 +κc′(µ)µ−A−κ (c′ (xL)xL − c (xL)) = v0 +κc′(µ)µ−κ (c′ (xH )xH − c (xH )) ,

and

β = v0 −κ(1−µ)c′(µ) +κ (1− xL)c′ (xL) +κc (xL) .

(iii) requires v0/κ ≥ η (xL,xH ), as stated in the result. ■
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A.9 Proposition 6.5 Proof

Proof. (i) is a consequence of Proposition 6.3. Suppose that v0/κ < η (xL,xH ) so that

efficient implementation is infeasible. Recall that P wants to maximize −γ (1−µ)−

βµ. Thus, if γ = β = 0 is implementable, they are obviously optimal. Substituting

them into the concavifying line (⋆) we get

h (x) = − (A+κc′ (xL))x+A−κ (c (xL)− xLc′ (xL)) .

We need to check for which values of xL and xH h lies above v0−κc (x). To that end,

we define function g (x)B h (x)− v0 +κc (x). Then,

g ′ (x) = − (A+κc′ (xL)) +κc′ (x) ,

and observe that g is strictly convex in x. Evidently, g ′ (0) < 0, so F is either mini-

mized at x◦ = x◦ (xL,xH ), implicitly defined as g ′ (x◦) = 0 (if such an x ≤ 1 exists) or

x = 1. Define x† Bmin {x◦,1}. Thus, γ = β = 0 is optimal if and only if g
(
x†
)
≥ 0.

Note that there is a knife-edge case where v0/κ = η (xL,xH ), x† = µ, and β = γ = 0

(and the first-best is attained). This is the only way for all three constraints to bind.

Can we have one of the non-negativity constraints bind, γ = 0, say; and the

other constraints all be slack, i.e., β > 0 and f (x) > v0 − κc (x) for all x ∈ [0,1]?

No: otherwise the principal could decrease β by a sufficiently small ε > 0, strictly

increasing her payoff and still leaving Constraint IR-v0 satisfied. This yields (ii)a

and (ii)b of the result. ■

A.10 Proposition 6.6 Proof

Proof. Simply rearrange the inequality f (µ) ≥ v0 to get

γ ≥
v0 −κ ((1−µ) (xHc′ (xH )− c (xH ))−µ ((1− xL)c′ (xH ) + c (xL)))

1−µ
−

µ

1−µ
β ,

then set β = 0 and solve for when the right-hand side of this inequality is positive.

■
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